Department of Chemical Engineering, Politeknik Teknologi Kimia Industri, Medan, Indonesia.
J Mol Model. 2023 May 15;29(6):177. doi: 10.1007/s00894-023-05583-8.
The synthesis of azobenzene materials is an important aspect of the research in the field of photo-switch materials. It is currently thought that azobenzene molecules exist in the cis and trans form of molecular structure configuration. However, the reaction process allowing for reversible energy switches from trans to cis form is still challenging. Therefore, it is crucial to understand the molecular properties of the azobenzene compounds in order to provide reference for future synthesis and application. Affirmation supporting this perspective has been substantially derived from theoretical results in the isomerization process and whether these molecular structures may affect the electronic properties entirely needs to be confirmed. In this study, I give my effort to understand the molecular structure properties of the cis and trans form of azobenzene molecule from 2-hydroxy-5-methyl-2'-nitroazobenzene (HMNA). Their chemistry phenomena are investigated using the density functional theory (DFT) method. This study shows that the trans-HMNA has a molecular size of 9.0 Å and the cis-HMNA has a molecular size of 6.6 Å. The trans-HMNA exhibits an electronic transition of π → π* type driven by an azo bond, whereas the cis-HMNA exhibits an electronic transition of n → π* type with respect to the non-bonding electrons of oxygen and nitrogen atoms. Therefore, the HMNA mechanism pathway from trans to cis form is feasible to undergo at the inversion pathway in the ground state.
All DFT calculations were performed using the Gaussian Software Packages (Gaussian 09 Revision-A.02 and GaussView 5.0.8). Gaussum 3.0 software was selected to visualize the molecular orbital levels in the density of states diagram. The optimized molecular geometrical parameter was calculated using B3LYP/cc-pVTZ level in the gas phase. TD-DFT with M06-2X/cc-pVTZ level was used as a method for the precise interpretation of excited states in molecular systems.
偶氮苯材料的合成是光开关材料研究领域的一个重要方面。目前认为,偶氮苯分子存在顺式和反式两种分子结构构型。然而,允许从反式到顺式形式进行可逆能量转换的反应过程仍然具有挑战性。因此,了解偶氮苯化合物的分子性质对于为未来的合成和应用提供参考至关重要。支持这一观点的证据主要来自异构化过程中的理论结果,并且这些分子结构是否可能完全影响电子性质仍需要得到证实。在这项研究中,我努力从 2-羟基-5-甲基-2'-硝基偶氮苯(HMNA)中了解顺式和反式偶氮苯分子的分子结构性质。使用密度泛函理论(DFT)方法研究了它们的化学现象。研究表明,反式-HMNA 的分子尺寸为 9.0 Å,顺式-HMNA 的分子尺寸为 6.6 Å。反式-HMNA 表现出由偶氮键驱动的π→π类型的电子跃迁,而顺式-HMNA 表现出与氧和氮原子的非键电子有关的 n→π类型的电子跃迁。因此,HMNA 从反式到顺式形式的机制途径在基态下可以沿着反转途径进行。
所有 DFT 计算均使用 Gaussian 软件包(Gaussian 09 Revision-A.02 和 GaussView 5.0.8)进行。选择 Gaussum 3.0 软件来可视化密度态图中的分子轨道能级。在气相中使用 B3LYP/cc-pVTZ 级别计算优化的分子几何参数。使用 TD-DFT 与 M06-2X/cc-pVTZ 级别作为分子体系中激发态精确解释的方法。