Suppr超能文献

肿瘤乏氧研究进展:基于放射性核素的生物标志物作为诊断工具。

Insight into Tumor Hypoxia: Radionuclide-based Biomarker as Diagnostic Tools.

机构信息

Department of Nuclear Medicine, SGPGIMS, Lucknow, Uttar Pradesh, 226014, India.

出版信息

Curr Top Med Chem. 2023;23(12):1136-1154. doi: 10.2174/1568026623666230515154442.

Abstract

The radiolabeled tracers have been extensively utilized to access various physiological and pathological conditions non-invasively, such as cancers, inflammation, and organ-specific imaging. These tracers demonstrate and study tumor hypoxia in several malignancies. Hypoxia is commonly seen in solid tumors. Tumor Hypoxia is a non-physiological condition of reduced oxygen concentration in the tumor. Hypoxia is associated with adverse outcomes such as treatment resistance and metastases in solid tumors. Tumor hypoxia may result in resistance to radiation therapy and chemotherapy, leading to a poor prognosis. It is one of the clinically paramount factors in treatment planning. Various chemical scaffolds are labeled with compatible radioisotopes for imaging hypoxia by Single-photon emission computed tomography (SPECT) and Positron emission tomography (PET). Radionuclides, such as [F]Flourine, [Tc]Technetium, [I]Iodine, [I] Iodine, and [Cu]Copper are used for incorporation into different chemical scaffolds.Among them, [F]Flourine and [Cu]Copper tagged radiopharmaceuticals are most explored, such as [F]FMISO, [F]FAZA, [F]FETNIM, and N4-methyl thiosemicarbazone [Cu][Cu (ATSM)]. Some of the promising scaffolds for imaging hypoxia are [F]EF1, [F]EF5, [F]EF3, and [F]HX4. This review is focused on developing radiochemistry routes to synthesize different radiopharmaceuticals for imaging hypoxia in clinical and preclinical studies, as described in the literature. The chemist and radiochemist exerted enormous efforts to overcome these obstacles. They have successfully formulated multiple radiopharmaceuticals for hypoxia imaging. Radionuclide incorporation in high selectivity and efficiency (radiochemical yield, specific activity, purity, and radio-scalability) is a need for application perspective. Versatile chemistry, including nucleophilic and electrophilic substitutions, allows the direct or indirect introduction of radioisotopes into molecules of interest. This review will discuss the chemical routes for synthesizing and utilizing different precursors for radiolabeling with radionuclides.We will briefly summaries these radio-labeled tracers' application and biological significance.

摘要

放射性示踪剂已被广泛用于无创性地获取各种生理和病理状态,例如癌症、炎症和器官特异性成像。这些示踪剂在几种恶性肿瘤中展示并研究肿瘤缺氧。缺氧在实体瘤中很常见。肿瘤缺氧是肿瘤中氧浓度降低的非生理状态。缺氧与实体瘤中的治疗抵抗和转移等不良结局相关。肿瘤缺氧可能导致对放射治疗和化学治疗的抵抗,从而导致预后不良。它是治疗计划中最重要的临床因素之一。各种化学支架用相容的放射性同位素进行标记,用于通过单光子发射计算机断层扫描(SPECT)和正电子发射断层扫描(PET)成像缺氧。放射性核素,如[F]氟、[Tc]锝、[I]碘、[I]碘和[Cu]铜,用于掺入不同的化学支架中。其中,[F]氟和[Cu]铜标记的放射性药物是最受探索的,例如[F]FMISO、[F]FAZA、[F]FETNIM 和 N4-甲基硫代半卡巴嗪[Cu][Cu(ATSM)]。一些用于成像缺氧的有前途的支架是[F]EF1、[F]EF5、[F]EF3 和[F]HX4。本综述重点介绍了开发放射化学途径来合成不同的放射性药物,用于临床和临床前研究中的缺氧成像,如文献所述。化学家和放射化学家付出了巨大的努力来克服这些障碍。他们已经成功地制定了多种用于缺氧成像的放射性药物。放射性核素的高选择性和高效率(放射化学产率、比活度、纯度和放射性可扩展性)掺入是应用的需要。包括亲核和亲电取代在内的多功能化学允许将放射性同位素直接或间接地引入感兴趣的分子中。本综述将讨论合成和利用不同前体进行放射性核素标记的化学途径。我们将简要总结这些放射性标记示踪剂的应用和生物学意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验