Suppr超能文献

醛糖二酸酶 II 的催化反应机制:量子力学/分子力学研究。

Catalytic Reaction Mechanism of Glyoxalase II: A Quantum Mechanics/Molecular Mechanics Study.

机构信息

Department of Chemistry, University of Kurdistan, P.O. Box 66175-416, 66177-15177 Sanandaj, Iran.

Department of Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.

出版信息

J Phys Chem B. 2023 May 25;127(20):4480-4495. doi: 10.1021/acs.jpcb.3c01495. Epub 2023 May 16.

Abstract

Methylglyoxal (MG) is a reactive and toxic compound produced in carbohydrate, lipid, and amino acid metabolism. The glyoxalase system is the main detoxifying route for MG and consists of two enzymes, glyoxalase I (GlxI) and glyoxalase II (GlxII). GlxI catalyzes the formation of -d-lactoylglutathione from hemithioacetal, and GlxII converts this intermediate to d-lactate. A relationship between the glyoxalase system and some diseases like diabetes has been shown, and inhibiting enzymes of this system may be an effective means of controlling certain diseases. A detailed understanding of the reaction mechanism of an enzyme is essential to the rational design of competitive inhibitors. In this work, we use quantum mechanics/molecular mechanics (QM/MM) calculations and energy refinement utilizing the big-QM and QM/MM thermodynamic cycle perturbation methods to propose a mechanism for the GlxII reaction that starts with a nucleophilic attack of the bridging OH group on the substrate. The coordination of the substrate to the Zn ions places its electrophilic center close to the hydroxide group, enabling the reaction to proceed. Our estimated reaction energies are in excellent agreement with experimental data, thus demonstrating the reliability of our approach and the proposed mechanism. Additionally, we examined alternative protonation states of Asp-29, Asp-58, Asp-134, and the bridging hydroxide ion in the catalytic process. However, these give less favorable reactions, a poorer reproduction of the crystal structure geometry of the active site, and higher root-mean-squared deviations of the active site residues in molecular dynamics simulations.

摘要

甲基乙二醛 (MG) 是碳水化合物、脂质和氨基酸代谢过程中产生的一种具有反应性和毒性的化合物。糖醛酸酶系统是 MG 的主要解毒途径,由两种酶组成,即糖醛酸酶 I (GlxI) 和糖醛酸酶 II (GlxII)。GlxI 催化半缩醛与 -d-乳酰谷胱甘肽的形成,而 GlxII 将该中间产物转化为 d-乳酸。糖醛酸酶系统与糖尿病等一些疾病之间的关系已经得到证实,抑制该系统的酶可能是控制某些疾病的有效手段。详细了解酶的反应机制对于竞争性抑制剂的合理设计至关重要。在这项工作中,我们使用量子力学/分子力学 (QM/MM) 计算和能量细化,利用大-QM 和 QM/MM 热力学循环微扰方法,提出了 GlxII 反应的机制,该机制起始于桥接 OH 基团对底物的亲核攻击。底物与 Zn 离子的配位将其亲电中心置于靠近氢氧根的位置,从而使反应能够进行。我们估计的反应能与实验数据非常吻合,从而证明了我们方法的可靠性和提出的机制。此外,我们还研究了催化过程中 Asp-29、Asp-58、Asp-134 和桥接氢氧根离子的替代质子化状态。然而,这些状态会导致反应更不利,对活性位点晶体结构几何形状的再现更差,以及分子动力学模拟中活性位点残基的均方根偏差更高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验