Forest Construction, Geodesy and Photogrammetry, Faculty of Forestry, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey.
Department of Surveying and Cadastre, Faculty of Forestry, Istanbul University-Cerrahpaşa, Bahcekoy, Sariyer, Istanbul, Turkey.
Environ Monit Assess. 2023 May 16;195(6):678. doi: 10.1007/s10661-023-11366-8.
Tree diameter measurement is one of the most important stages of forest inventories to assess growing stock, aboveground biomass, and landscape restoration options, among others. This study investigates the accuracy of measuring tree diameters using a Light Detection and Ranging (LiDAR)-equipped smartphone vs. a normal caliper (reference data) and the opportunity to use low-cost smartphone-based applications in forest inventories. To estimate the diameter at breast height (DBH) of single trees, we used a smartphone with a third-party app that automatically analyzed three-dimensional (3D) point clouds. For two different measurement techniques, we compared the two measurement techniques based on DBH data from 55 Calabrian pine (Pinus brutia Ten.) and 50 oriental plane (Platanus orientalis L.) trees using the paired-sample t-test and Wilcoxon signed-rank test. Mean absolute error (MAE), mean squared error (MSE), root mean square error (RMSE), percent bias (PBIAS), and coefficient of determination (R) were used as precision and error statistics. Statistical differences were observed between the reference and smartphone-based DBH according to the paired-sample t-test and Wilcoxon signed-rank test. The R values obtained were determined as 0.91, 0.88, and 0.88 for Calabrian pine, oriental plane, and all tree species (105 trees), respectively. In addition to the overall accuracy performance of the comparison between reference and estimations, MAE, MSE, RMSE, and PBIAS values for the DBH of 105 tree stems were calculated as 1.56 cm, 5.42 cm, 2.33 cm, and - 5.10%, respectively. The estimation accuracies increased in regular stem forms compared with forked stems particularly observed on plane trees. Further experiments are needed to investigate the uncertainties associated with trees of different stem forms, species (coniferous or deciduous), different work environments, and different types of LiDAR and LiDAR-based app scanners.
树木直径测量是森林清查的最重要阶段之一,用于评估生长木、地上生物量和景观恢复选项等。本研究调查了使用配备激光雷达(LiDAR)的智能手机与普通卡尺(参考数据)测量树木直径的准确性,以及在森林清查中使用低成本智能手机应用程序的机会。为了估计单株树木的胸径(DBH),我们使用了一款带有第三方应用程序的智能手机,该应用程序可以自动分析三维(3D)点云。对于两种不同的测量技术,我们根据 55 棵卡拉布里亚松(Pinus brutia Ten.)和 50 棵东方悬铃木(Platanus orientalis L.)树木的 DBH 数据,使用配对样本 t 检验和 Wilcoxon 符号秩检验比较了两种测量技术。平均绝对误差(MAE)、平均平方误差(MSE)、均方根误差(RMSE)、百分偏度(PBIAS)和决定系数(R)被用作精度和误差统计。根据配对样本 t 检验和 Wilcoxon 符号秩检验,参考值和基于智能手机的 DBH 之间存在显著差异。对于卡拉布里亚松、东方悬铃木和所有树种(105 棵树),获得的 R 值分别为 0.91、0.88 和 0.88。除了参考值和估计值之间比较的整体准确性表现外,还计算了 105 棵树干的 DBH 的 MAE、MSE、RMSE 和 PBIAS 值,分别为 1.56 厘米、5.42 厘米、2.33 厘米和-5.10%。与叉状茎相比,在规则茎形中,估计精度有所提高,而在悬铃木中尤其明显。需要进一步的实验来研究与不同茎形、树种(针叶树或落叶树)、不同工作环境以及不同类型的 LiDAR 和基于 LiDAR 的应用程序扫描仪相关的不确定性。
Environ Monit Assess. 2023-5-16
Environ Monit Assess. 2020-6-6
Ying Yong Sheng Tai Xue Bao. 2014-11
Environ Monit Assess. 2018-4-15
Sensors (Basel). 2019-7-21
Sensors (Basel). 2019-12-24
Sensors (Basel). 2025-8-14