Suppr超能文献

纳米尺度水膜对氧化镁纳米立方的羟基化作用。

MgO nanocube hydroxylation by nanometric water films.

机构信息

Department of Chemistry, Umeå University, SE 901 87 Umeå, Sweden.

出版信息

Nanoscale. 2023 Jun 23;15(24):10286-10294. doi: 10.1039/d2nr07140a.

Abstract

Hydrophilic nanosized minerals exposed to air moisture host thin water films that are key drivers of reactions of interest in nature and technology. Water films can trigger irreversible mineralogical transformations, and control chemical fluxes across networks of aggregated nanomaterials. Using X-ray diffraction, vibrational spectroscopy, electron microscopy, and (micro)gravimetry, we tracked water film-driven transformations of periclase (MgO) nanocubes to brucite (Mg(OH)) nanosheets. We show that three monolayer-thick water films first triggered the nucleation-limited growth of brucite, and that water film loadings continuously increased as newly-formed brucite nanosheets captured air moisture. Small (8 nm-wide) nanocubes were completely converted to brucite under this regime while growth on larger (32 nm-wide) nanocubes transitioned to a diffusion-limited regime when (∼0.9 nm-thick) brucite nanocoatings began hampering the flux of reactive species. We also show that intra- and inter-particle microporosity hosted a hydration network that sustained GPa-level crystallization pressures, compressing interlayer brucite spacing during growth. This was prevalent in aggregated 8 nm wide nanocubes, which formed a maze-like network of slit-shaped pores. By resolving the impact of nanocube size and microporosity on reaction yields and crystallization pressures, this work provides new insight into the study of mineralogical transformations induced by nanometric water films. Our findings can be applied to structurally related minerals important to nature and technology, as well as to advance ideas on crystal growth under nanoconfinement.

摘要

暴露于空气中水分的亲水性纳米矿物会形成很薄的水膜,而这些水膜是自然界和技术中感兴趣的反应的关键驱动因素。水膜可以引发不可逆的矿物转化,并控制跨聚合纳米材料网络的化学通量。我们使用 X 射线衍射、振动光谱、电子显微镜和(微)重量法,跟踪了方镁石(MgO)纳米立方体向水镁石(Mg(OH))纳米片的水膜驱动转化。我们表明,最初有三层单分子厚的水膜引发了水镁石的成核受限生长,而随着新形成的水镁石纳米片捕获空气水分,水膜的负载不断增加。在这种情况下,小(8nm 宽)纳米立方体完全转化为水镁石,而在较大(32nm 宽)纳米立方体上的生长则转变为扩散受限的阶段,当(约 0.9nm 厚)水镁石纳米涂层开始阻碍反应物质的通量时。我们还表明,颗粒内和颗粒间的微孔结构容纳了一个水化网络,该网络维持了 GPa 级别的结晶压力,在生长过程中压缩了层间水镁石的间距。这在聚合的 8nm 宽纳米立方体中很普遍,其形成了迷宫状的狭缝状孔隙网络。通过解决纳米立方体尺寸和微孔结构对反应产率和结晶压力的影响,这项工作为研究纳米级水膜诱导的矿物转化提供了新的见解。我们的发现可以应用于对自然界和技术都很重要的结构相关矿物,并为在纳米限域下的晶体生长提供思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验