School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China.
Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA.
Small. 2023 Jun;19(26):e2302295. doi: 10.1002/smll.202302295. Epub 2023 May 17.
Although the electrocatalytic nitrate reduction reaction (NO RR) is an attractive NH synthesis route, it suffers from low yield due to the lack of efficient catalysts. Here, this work reports a novel grain boundary (GB)-rich Sn-Cu catalyst, derived from in situ electroreduction of Sn-doped CuO nanoflower, for effectively electrochemical converting NO to NH . The optimized Sn -Cu electrode achieves a high NH yield rate of 1.98 mmol h cm with an industrial-level current density of -425 mA cm at -0.55 V versus a reversible hydrogen electrode (RHE) and a maximum Faradaic efficiency of 98.2% at -0.51 V versus RHE, outperforming the pure Cu electrode. In situ Raman and attenuated total reflection Fourier transform infrared spectroscopies reveal the reaction pathway of NO RR to NH by monitoring the adsorption property of reaction intermediates. Density functional theory calculations clarify that the high-density GB active sites and the competitive hydrogen evolution reaction (HER) suppression induced by Sn doping synergistically promote highly active and selective NH synthesis from NO RR. This work paves an avenue for efficient NH synthesis over Cu catalyst by in situ reconstruction of GB sites with heteroatom doping.
虽然电催化硝酸盐还原反应(NO RR)是一种很有吸引力的 NH 合成途径,但由于缺乏高效催化剂,其产率较低。在这项工作中,我们报道了一种新型晶界(GB)丰富的 Sn-Cu 催化剂,它来源于 Sn 掺杂的 CuO 纳米花的原位电化学还原,可有效电化学将 NO 转化为 NH 。优化后的 Sn-Cu 电极在-0.55 V 相对于可逆氢电极(RHE)的工业级电流密度为-425 mA cm 时,NH 产率达到了 1.98 mmol h cm ,最大法拉第效率为 98.2%,优于纯 Cu 电极。原位拉曼和衰减全反射傅里叶变换红外光谱通过监测反应中间体的吸附特性,揭示了 NO RR 到 NH 的反应途径。密度泛函理论计算表明,高密度 GB 活性位和 Sn 掺杂引起的竞争析氢反应(HER)抑制协同作用,促进了高效、选择性的 NH 从 NO RR 合成。这项工作通过引入杂原子掺杂原位重构 GB 位,为 Cu 催化剂上高效 NH 合成开辟了一条途径。