LIPE, Higher School of Technology, University Hassan II of Casablanca, Oasis, B.P 8012, Casablanca, Morocco.
LPMMAT, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco.
Environ Sci Pollut Res Int. 2024 Nov;31(53):62056-62064. doi: 10.1007/s11356-023-27529-6. Epub 2023 May 18.
Today, hydrogen is one of the most credible options for a non-polluting, carbon-free energy carrier. Hydrogen can be obtained or produced by different means from different renewable energy sources and can be stored in solid, liquid, or gaseous form. Storing hydrogen in complex hydrides in solid form is one of the most efficient methods of storage because they are secure, offer high hydrogen capacity, and demand optimal functioning conditions. Complex hydrides give a large gravimetric capacity that allows large amounts of hydrogen to be stored. This study examined the effects of triaxial strains on hydrogen storage properties of the perovskite-type compound KNaAlH. The analysis was conducted through first principle calculations using the full potential linearized augmented plane wave (FP-LAPW) approach. Our results indicate that the formation energy and desorption temperature of KNaAlH hydride were improved under a maximum triaxial compressive strains of ε ≈ - 5%. Specifically, the values of formation energy and desorption temperature were - 40.14 kJ/mol.H and 308.72 K, respectively, compared to the original values of - 62.98 kJ/mol.H and 484.52 K. In addition, the analysis of the densities of states showed that changes in the dehydrogenation and structural properties of KNaAlH were closely linked to the Fermi level value of the total densities of states. These findings provide valuable insights into the potential of KNaAlH as a hydrogen storage material.
如今,氢气是一种最有潜力的无污染、无碳排放的能源载体。氢气可以通过不同的可再生能源来源以不同的方式获得或生产,并可以以固态、液态或气态形式储存。以固态复杂氢化物的形式储存氢气是最有效的储存方法之一,因为它们安全、提供高的储氢容量,并需要最佳的工作条件。复杂氢化物提供了大的比重量,允许储存大量的氢气。本研究探讨了三轴应变对钙钛矿型化合物 KNaAlH 的储氢性能的影响。分析是通过使用完全势线性化增广平面波(FP-LAPW)方法的第一性原理计算进行的。我们的结果表明,在最大三轴压缩应变 ε ≈ - 5%下,KNaAlH 氢化物的形成能和脱附温度得到了改善。具体而言,形成能和脱附温度的值分别为-40.14 kJ/mol.H 和 308.72 K,而原始值分别为-62.98 kJ/mol.H 和 484.52 K。此外,态密度的分析表明,KNaAlH 的脱氢和结构性质的变化与总态密度的费米能级值密切相关。这些发现为 KNaAlH 作为储氢材料的潜力提供了有价值的见解。