State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China.
School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China.
J Phys Chem B. 2023 Jun 1;127(21):4820-4828. doi: 10.1021/acs.jpcb.2c08718. Epub 2023 May 17.
β--Acetylhexosaminidases (HEXs) play important roles in human diseases and the biosynthesis of human milk oligosaccharides. Despite extensive research, the catalytic mechanism of these enzymes remains largely unexplored. In this study, we employed quantum mechanics/molecular mechanics metadynamics to investigate the molecular mechanism of HEX (HEX), which has shed light on the transition state structures and conformational pathways of this enzyme. Our simulations revealed that Asp242, located near the assisting residue, can switch the reaction intermediate to an oxazolinium ion or a neutral oxazoline, depending on the protonation state of the residue. Moreover, our findings indicated that the free energy barrier of the second-step reaction starting from the neutral oxazoline increases steeply due to the reduction in the anomeric carbon positive charge and the shortening of the C1-O bond. Our results provide valuable insights into the mechanism of substrate-assisted catalysis and could facilitate the design of inhibitors and the engineering of analogous glycosidases for biosynthesis.
β--乙酰氨基己糖苷酶(HEXs)在人类疾病和人乳寡糖的生物合成中发挥着重要作用。尽管已经进行了广泛的研究,但这些酶的催化机制在很大程度上仍未得到探索。在这项研究中,我们采用量子力学/分子力学元动力学方法研究了 HEX(HEX)的分子机制,这为该酶的过渡态结构和构象途径提供了新的认识。我们的模拟表明,位于协助残基附近的 Asp242 可以根据残基的质子化状态将反应中间体切换为恶唑啉离子或中性恶唑啉。此外,我们的研究结果表明,从中性恶唑啉开始的第二步反应的自由能垒由于糖端碳原子正电荷的降低和 C1-O 键的缩短而急剧增加。我们的研究结果为底物辅助催化的机制提供了有价值的见解,并有助于抑制剂的设计和类似糖苷酶的生物合成工程。