Suppr超能文献

SEEGAtlas:一种使用临床图像识别和分类深部电极的框架。

SEEGAtlas: A framework for the identification and classification of depth electrodes using clinical images.

机构信息

Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.

McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.

出版信息

J Neural Eng. 2023 May 31;20(3). doi: 10.1088/1741-2552/acd6bd.

Abstract

Accurate localization, classification, and visualization of intracranial electrodes are fundamental for analyzing intracranial electrographic recordings. While manual contact localization is the most common approach, it is time-consuming, prone to errors, and is particularly challenging and subjective in low quality images, which are common in clinical practice. Automatically locating and interactively visualizing where each of the 100-200 individual contacts records in the brain is essential for understanding the neural origins of intracranial EEG.We introduced the SEEGAtlas plugin for the IBIS system, an open-source software platform for image-guided neurosurgery and multi-modal image visualization. SEEGAtlas extends IBIS functionalities to semi-automatically locate depth-electrode contact coordinates and automatically label the tissue type and anatomical region in which each contact is located. To illustrate the capabilities of SEEGAtlas and to validate the algorithms, clinical magnetic resonance images (MRIs) before and after electrode implantation of ten patients with depth electrodes implanted to localize the origin of their epileptic seizures were analyzed.. Visually identified contact coordinates were compared with the coordinates obtained by SEEGAtlas, resulting in a median difference of 1.4 mm. The agreement was lower for MRIs with weak susceptibility artifacts than for high-quality images. The tissue type was classified with 86% agreement with visual inspection. The anatomical region was classified as having a median agreement across patients of 82%.. The SEEGAtlas plugin is user-friendly and enables accurate localization and anatomical labeling of individual contacts along implanted electrodes, together with powerful visualization tools. Employing the open-source SEEGAtlas results in accurate analysis of the recorded intracranial electroencephalography (EEG), even when only suboptimal clinical imaging is available. A better understanding of the cortical origin of intracranial EEG would help improve clinical interpretation and answer fundamental questions of human neuroscience.

摘要

颅内电极的精确定位、分类和可视化是分析颅内脑电图记录的基础。虽然手动接触定位是最常见的方法,但它耗时、容易出错,并且在临床实践中常见的低质量图像中尤其具有挑战性和主观性。自动定位和交互式可视化每个 100-200 个个体接触记录在大脑中的位置对于理解颅内 EEG 的神经起源至关重要。我们为 IBIS 系统引入了 SEEGAtlas 插件,IBIS 是一种用于图像引导神经外科和多模态图像可视化的开源软件平台。SEEGAtlas 扩展了 IBIS 的功能,以半自动定位深度电极接触坐标,并自动标记每个接触所在的组织类型和解剖区域。为了说明 SEEGAtlas 的功能并验证算法,分析了十位接受深度电极植入以定位癫痫发作起源的患者的术前和术后临床磁共振成像 (MRI)。与 SEEGAtlas 获得的坐标相比,视觉识别的接触坐标中位数差异为 1.4 毫米。对于具有较弱磁化率伪影的 MRI,其一致性低于高质量图像。组织类型的分类与视觉检查的一致性为 86%。解剖区域的分类在患者之间的中位数一致性为 82%。SEEGAtlas 插件易于使用,能够沿着植入的电极准确定位和解剖标记单个接触,并具有强大的可视化工具。使用开源 SEEGAtlas 可对记录的颅内脑电图 (EEG) 进行准确分析,即使只有不理想的临床影像可用也是如此。更好地了解颅内 EEG 的皮质起源将有助于改善临床解释并回答人类神经科学的基本问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验