Suppr超能文献

系统性幼年特发性关节炎中的细胞外囊泡。

Extracellular vesicles in systemic juvenile idiopathic arthritis.

机构信息

Department of Pediatrics, Stanford University School of Medicine, 269 Campus Drive, CCSR Rm 2105c, Stanford, CA 94305, United States.

Departments of Pathology and Biomedical Engineering, Oregon Health & Sciences University, 3181 SW Sam Jackson Portland, OR 97239, United States.

出版信息

J Leukoc Biol. 2023 Oct 26;114(5):387-403. doi: 10.1093/jleuko/qiad059.

Abstract

Systemic juvenile idiopathic arthritis is a chronic pediatric inflammatory disease of unknown etiology, characterized by fever, rash, hepatosplenomegaly, serositis, and arthritis. We hypothesized that intercellular communication, mediated by extracellular vesicles, contributes to systemic juvenile idiopathic arthritis pathogenesis and that the number and cellular sources of extracellular vesicles would differ between inactive and active states of systemic juvenile idiopathic arthritis and healthy controls. We evaluated plasma from healthy pediatric controls and patients with systemic juvenile idiopathic arthritis with active systemic flare or inactive disease. We isolated extracellular vesicles by size exclusion chromatography and determined total extracellular vesicle abundance and size distribution using microfluidic resistive pulse sensing. Cell-specific extracellular vesicle subpopulations were measured by nanoscale flow cytometry. Isolated extracellular vesicles were validated using a variety of ways, including nanotracking and cryo-electron microscopy. Extracellular vesicle protein content was analyzed in pooled samples using mass spectrometry. Total extracellular vesicle concentration did not significantly differ between controls and patients with systemic juvenile idiopathic arthritis. Extracellular vesicles with diameters <200 nm were the most abundant, including the majority of cell-specific extracellular vesicle subpopulations. Patients with systemic juvenile idiopathic arthritis had significantly higher levels of extracellular vesicles from activated platelets, intermediate monocytes, and chronically activated endothelial cells, with the latter significantly more elevated in active systemic juvenile idiopathic arthritis relative to inactive disease and controls. Protein analysis of isolated extracellular vesicles from active patients showed a proinflammatory profile, uniquely expressing heat shock protein 47, a stress-inducible protein. Our findings indicate that multiple cell types contribute to altered extracellular vesicle profiles in systemic juvenile idiopathic arthritis. The extracellular vesicle differences between systemic juvenile idiopathic arthritis disease states and healthy controls implicate extracellular vesicle-mediated cellular crosstalk as a potential driver of systemic juvenile idiopathic arthritis disease activity.

摘要

系统性幼年特发性关节炎是一种病因不明的慢性儿科炎症性疾病,其特征为发热、皮疹、肝脾肿大、浆膜炎和关节炎。我们假设细胞间通讯,由细胞外囊泡介导,有助于系统性幼年特发性关节炎的发病机制,并且细胞外囊泡的数量和细胞来源在系统性幼年特发性关节炎的活动期和非活动期与健康对照组之间会有所不同。我们评估了来自健康儿科对照者和患有活动期全身性发作或非活动期系统性幼年特发性关节炎的患者的血浆。我们通过大小排阻色谱法分离细胞外囊泡,并使用微流控电阻脉冲感测法确定总细胞外囊泡丰度和大小分布。通过纳米流式细胞术测量细胞特异性细胞外囊泡亚群。通过多种方法验证分离的细胞外囊泡,包括纳米跟踪和冷冻电子显微镜。使用质谱法分析了pooled 样本中的细胞外囊泡蛋白含量。对照者和系统性幼年特发性关节炎患者之间的总细胞外囊泡浓度没有显著差异。直径<200nm 的细胞外囊泡最丰富,包括大多数细胞特异性细胞外囊泡亚群。与非活动期和对照组相比,患有系统性幼年特发性关节炎的患者具有显著更高水平的活化血小板、中间单核细胞和慢性活化内皮细胞来源的细胞外囊泡,而后者在活动期系统性幼年特发性关节炎中显著更高。来自活动期患者的分离细胞外囊泡的蛋白质分析显示出促炎特征,唯一表达热休克蛋白 47,一种应激诱导蛋白。我们的研究结果表明,多种细胞类型参与了系统性幼年特发性关节炎中外泌体谱的改变。系统性幼年特发性关节炎疾病状态与健康对照组之间的细胞外囊泡差异表明细胞外囊泡介导的细胞串扰可能是系统性幼年特发性关节炎疾病活动的潜在驱动因素。

相似文献

1
Extracellular vesicles in systemic juvenile idiopathic arthritis.
J Leukoc Biol. 2023 Oct 26;114(5):387-403. doi: 10.1093/jleuko/qiad059.
8
Systemic Juvenile Idiopathic Arthritis.
Pediatr Clin North Am. 2018 Aug;65(4):691-709. doi: 10.1016/j.pcl.2018.04.005.
9
Distribution of circulating cells in systemic juvenile idiopathic arthritis across disease activity states.
Clin Immunol. 2010 Feb;134(2):206-16. doi: 10.1016/j.clim.2009.09.010. Epub 2009 Oct 29.
10
Tocilizumab in the treatment of systemic juvenile idiopathic arthritis.
Open Access Rheumatol. 2012 Jul 4;4:71-79. doi: 10.2147/OARRR.S21969. eCollection 2012.

引用本文的文献

1
Insights to Resistive Pulse Sensing of Microparticle and Biological Cells on Microfluidic Chip.
Biosensors (Basel). 2025 Aug 1;15(8):496. doi: 10.3390/bios15080496.

本文引用的文献

3
Serum Amyloid A in Inflammatory Rheumatic Diseases: A Compendious Review of a Renowned Biomarker.
Front Immunol. 2021 Feb 19;11:631299. doi: 10.3389/fimmu.2020.631299. eCollection 2020.
5
MIFlowCyt-EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments.
J Extracell Vesicles. 2020 Feb 3;9(1):1713526. doi: 10.1080/20013078.2020.1713526. eCollection 2020.
6
Role of Neutrophil Extracellular Traps and Vesicles in Regulating Vascular Endothelial Permeability.
Front Immunol. 2019 May 9;10:1037. doi: 10.3389/fimmu.2019.01037. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验