Suppr超能文献

各种营养风险标志物在因泌尿生殖系统癌症住院治疗的患者中的预后价值:一项回顾性研究。

Prognostic value of various nutritional risk markers in patients hospitalized for the treatment of genitourinary cancer: A retrospective study.

机构信息

Department of Urology, Daiyukai Daiichi Hospital, 1-6-12, Hagoromo, Ichinomiya, Aichi, 491-0025, Japan; Department of Urology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1193, Japan.

Department of Nephrology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan.

出版信息

Clin Nutr ESPEN. 2023 Jun;55:44-50. doi: 10.1016/j.clnesp.2023.03.002. Epub 2023 Mar 5.

Abstract

BACKGROUND & AIMS: Because malnutrition adversely affects the prognosis of patients with cancer, accurate nutritional status assessment is important. Therefore, this study aimed to verify the prognostic value of various nutritional assessment tools and compare their predictability.

METHODS

We retrospectively enrolled 200 patients hospitalized for genitourinary cancer between April 2018 and December 2021. Four nutritional risk markers, namely, Subjective Global Assessment (SGA) score, Mini-Nutritional Assessment-Short Form (MNA-SF) score, Controlling Nutritional Status (CONUT) score, and Geriatric Nutritional Risk Index (GNRI), were measured at admission. The endpoint was all-cause mortality.

RESULTS

SGA, MNA-SF, CONUT, and GNRI values were all independent predictors of all-cause mortality (hazard ratio [HR] = 7.72, 95% confidence interval [CI]: 1.75-34.1, P = 0.007; HR = 0.83, 95% CI: 0.75-0.93, P = 0.001; HR = 1.29, 95% CI: 1.16-1.43, P < 0.001; and HR = 0.95, 95% CI: 0.93-0.98, P < 0.001, respectively) even after adjustment for age, sex, cancer stage, and surgery or medication. However, in the model discrimination analysis, the net reclassification improvement of the CONUT model (vs. SGA: 0.420, P = 0.006 and vs. MNA-SF: 0.57, P < 0.001) and GNRI model (vs. SGA: 0.59, P < 0.001 and vs. MNA-SF: 0.671, P < 0.001) were significantly improved compared to the SGA and MNA-SF models, respectively. The combination of CONUT and GNRI models also had the highest predictability (C-index = 0.892).

CONCLUSIONS

Objective nutritional assessment tools were superior to subjective nutritional tools in predicting all-cause mortality in inpatients with genitourinary cancer. Measurement of both the CONUT score and GNRI might contribute to a more accurate prediction.

摘要

背景与目的

由于营养不良会对癌症患者的预后产生不利影响,因此准确的营养状况评估非常重要。因此,本研究旨在验证各种营养评估工具的预后价值,并比较它们的预测能力。

方法

我们回顾性纳入了 2018 年 4 月至 2021 年 12 月期间因泌尿生殖系统癌症住院的 200 例患者。在入院时测量了 4 种营养风险标志物,即主观整体评估(SGA)评分、微型营养评估-简短表格(MNA-SF)评分、控制营养状况(CONUT)评分和老年营养风险指数(GNRI)。终点为全因死亡率。

结果

SGA、MNA-SF、CONUT 和 GNRI 值均为全因死亡率的独立预测因素(危险比[HR]分别为 7.72、95%置信区间[CI]:1.75-34.1、P=0.007;HR 分别为 0.83、95%CI:0.75-0.93、P=0.001;HR 分别为 1.29、95%CI:1.16-1.43、P<0.001;和 HR 分别为 0.95、95%CI:0.93-0.98、P<0.001),即使在调整了年龄、性别、癌症分期以及手术或药物治疗后也是如此。然而,在模型判别分析中,CONUT 模型的净重新分类改善(与 SGA 相比:0.420,P=0.006 和与 MNA-SF 相比:0.57,P<0.001)和 GNRI 模型的净重新分类改善(与 SGA 相比:0.59,P<0.001 和与 MNA-SF 相比:0.671,P<0.001)均显著优于 SGA 和 MNA-SF 模型。CONUT 和 GNRI 模型的联合也具有最高的预测能力(C 指数=0.892)。

结论

客观营养评估工具在预测泌尿生殖系统癌症住院患者的全因死亡率方面优于主观营养工具。测量 CONUT 评分和 GNRI 可能有助于更准确的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验