Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
Stud Health Technol Inform. 2023 May 18;302:751-752. doi: 10.3233/SHTI230256.
OMOP common data model (CDM) is designed for analyzing large clinical data and building cohorts for medical research, which requires Extract-Transform-Load processes (ETL) of local heterogeneous medical data. We present a concept for developing and evaluating a modularized metadata-driven ETL process, which can transform data into OMOP CDM regardless of 1) the source data format, 2) its versions and 3) context of use.
OMOP 通用数据模型(CDM)旨在分析大型临床数据并为医学研究构建队列,这需要对本地异构医疗数据进行提取、转换和加载(ETL)处理。我们提出了一种开发和评估模块化元数据驱动 ETL 流程的概念,该流程可以将数据转换为 OMOP CDM,而无需考虑 1)源数据格式,2)其版本以及 3)使用上下文。