Suppr超能文献

使用FLORAL对微生物组数据进行增强特征选择:可扩展的对数比率套索回归

Enhanced Feature Selection for Microbiome Data using FLORAL: Scalable Log-ratio Lasso Regression.

作者信息

Fei Teng, Funnell Tyler, Waters Nicholas R, Raj Sandeep S, Sadeghi Keimya, Dai Anqi, Miltiadous Oriana, Shouval Roni, Lv Meng, Peled Jonathan U, Ponce Doris M, Perales Miguel-Angel, Gönen Mithat, van den Brink Marcel R M

机构信息

Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center.

Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center.

出版信息

bioRxiv. 2023 Dec 18:2023.05.02.538599. doi: 10.1101/2023.05.02.538599.

Abstract

Identifying predictive biomarkers of patient outcomes from high-throughput microbiome data is of high interest, while existing computational methods do not satisfactorily account for complex survival endpoints, longitudinal samples, and taxa-specific sequencing biases. We present FLORAL (https://vdblab.github.io/FLORAL/), an open-source computational tool to perform scalable log-ratio lasso regression and microbial feature selection for continuous, binary, time-to-event, and competing risk outcomes, with compatibility of longitudinal microbiome data as time-dependent covariates. The proposed method adapts the augmented Lagrangian algorithm for a zero-sum constraint optimization problem while enabling a two-stage screening process for extended false-positive control. In extensive simulation and real-data analyses, FLORAL achieved consistently better false-positive control compared to other lasso-based approaches, and better sensitivity over popular differential abundance testing methods for datasets with smaller sample size. In a survival analysis in allogeneic hematopoietic-cell transplant, we further demonstrated considerable improvement by FLORAL in microbial feature selection by utilizing longitudinal microbiome data over only using baseline microbiome data.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/459f/10750898/03228f489d47/nihpp-2023.05.02.538599v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验