Roy Pradyut, Virmani Mishika, Pillai Pramod P
Department of Chemistry, Indian Institute of Science Education and Research (Pune) Dr Homi Bhabha Road, Pashan Pune - 411008 India
Chem Sci. 2023 Apr 20;14(19):5167-5176. doi: 10.1039/d3sc00164d. eCollection 2023 May 17.
Development of stable blue-emitting materials has always been a challenging task because of the necessity of high crystal quality and good optical properties. We have developed a highly efficient blue-emitter, based on environmentally friendly indium phosphide/zinc sulphide quantum dots (InP/ZnS QDs) in water, by controlling the growth kinetics of the core as well as the shell. A rational combination of less-reactive metal-halides, phosphorus, and sulphur precursors is the key for achieving the uniform growth of the InP core and ZnS shell. The InP/ZnS QDs showed long-term stable photoluminescence (PL) in the pure-blue region (∼462 nm), with an absolute PL quantum yield of ∼50% and a colour purity of ∼80% in water. Cytotoxicity studies revealed that the cells can withstand up to ∼2 micromolar concentration of pure-blue emitting InP/ZnS QDs (∼120 μg mL). Multicolour imaging studies show that the PL of InP/ZnS QDs was well-retained inside the cells as well, without interfering with the fluorescence signal of commercially available biomarkers. Moreover, the ability of InP based pure-blue emitters to participate in an efficient Förster resonance energy transfer (FRET) process is demonstrated. Installing a favorable electrostatic interaction turned out to be crucial in achieving an efficient FRET process ( ∼75%) from blue-emitting InP/ZnS QDs to rhodamine B dye (Rh B) in water. The quenching dynamics fits well with the Perrin formalism and the distance-dependent quenching (DDQ) model, which confirms an electrostatically driven multi-layer assembly of Rh B acceptor molecules around the InP/ZnS QD donor. Furthermore, the process of FRET was successfully translated into the solid state, proving their suitability for device-level studies as well. In short, our study expands the spectrum of aqueous QDs based on InP towards the blue region for future biological and light harvesting studies.
由于需要高晶体质量和良好的光学性能,开发稳定的蓝色发光材料一直是一项具有挑战性的任务。我们通过控制核心以及外壳的生长动力学,在水中开发了一种基于环境友好型磷化铟/硫化锌量子点(InP/ZnS QDs)的高效蓝色发光体。反应性较低的金属卤化物、磷和硫前驱体的合理组合是实现InP核心和ZnS外壳均匀生长的关键。InP/ZnS QDs在纯蓝色区域(约462 nm)表现出长期稳定的光致发光(PL),在水中的绝对PL量子产率约为50%,色纯度约为80%。细胞毒性研究表明,细胞能够承受高达约2微摩尔浓度的纯蓝色发光InP/ZnS QDs(约120μg/mL)。多色成像研究表明,InP/ZnS QDs的PL在细胞内也能很好地保留,而不会干扰市售生物标志物的荧光信号。此外,还证明了基于InP的纯蓝色发光体参与高效Förster共振能量转移(FRET)过程的能力。结果表明,在水中实现从蓝色发光InP/ZnS QDs到罗丹明B染料(Rh B)的高效FRET过程(约75%),安装有利的静电相互作用至关重要。猝灭动力学与Perrin形式主义和距离依赖性猝灭(DDQ)模型拟合良好,这证实了Rh B受体分子围绕InP/ZnS QD供体的静电驱动多层组装。此外,FRET过程成功地转化为固态,证明了它们也适用于器件级研究。简而言之,我们的研究将基于InP的水性量子点的光谱扩展到蓝色区域,用于未来的生物和光捕获研究。