Suppr超能文献

与行为状态相关的胎儿和新生儿心率模式分类

Classification of fetal and neonatal heart rate patterns in relation to behavioural states.

作者信息

Jongsma H W, Nijhuis J G

出版信息

Eur J Obstet Gynecol Reprod Biol. 1986 May;21(5-6):293-9. doi: 10.1016/0028-2243(86)90007-9.

Abstract

For the assessment of behavioural states in the human fetus, the fetal heart rate (FHR) pattern is one of the state variables. A statistical method is described to classify FHR patterns. FHR recordings were made between 38 and 40 wk gestation. The tachogram was averaged over 3-s intervals. For FHR segments of 3 min duration the parameters of an autoregressive-moving average (ARMA) model were estimated. Simulated FHR patterns, generated by using these estimated ARMA parameters, resembled real recordings. The ARMA parameters were used as features for a retrospective classification of the FHR segments, using a linear discriminant function. The classification by the above method was compared with an independent visual classification of the FHR patterns. The computer/observer classification agreement was 85% (kappa = 0.70). These data were compared with classification results for neonatal heart rate segments. For prospective classification of FHR patterns a moving discriminant function was introduced.

摘要

为评估人类胎儿的行为状态,胎儿心率(FHR)模式是状态变量之一。本文描述了一种对FHR模式进行分类的统计方法。FHR记录在妊娠38至40周期间进行。心动图以3秒间隔进行平均。对于持续3分钟的FHR段,估计自回归移动平均(ARMA)模型的参数。使用这些估计的ARMA参数生成的模拟FHR模式类似于真实记录。ARMA参数被用作特征,通过线性判别函数对FHR段进行回顾性分类。将上述方法的分类结果与FHR模式的独立视觉分类结果进行比较。计算机/观察者分类一致性为85%(kappa = 0.70)。将这些数据与新生儿心率段的分类结果进行比较。为对FHR模式进行前瞻性分类,引入了移动判别函数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验