Suppr超能文献

通过合并发病队列和现患队列评估疾病的自然史:在修女研究中的应用。

Evaluation of the natural history of disease by combining incident and prevalent cohorts: application to the Nun Study.

机构信息

Division of Data Science, Yonsei University, Wonju, Korea.

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Lifetime Data Anal. 2023 Oct;29(4):752-768. doi: 10.1007/s10985-023-09602-x. Epub 2023 May 20.

Abstract

The Nun study is a well-known longitudinal epidemiology study of aging and dementia that recruited elderly nuns who were not yet diagnosed with dementia (i.e., incident cohort) and who had dementia prior to entry (i.e., prevalent cohort). In such a natural history of disease study, multistate modeling of the combined data from both incident and prevalent cohorts is desirable to improve the efficiency of inference. While important, the multistate modeling approaches for the combined data have been scarcely used in practice because prevalent samples do not provide the exact date of disease onset and do not represent the target population due to left-truncation. In this paper, we demonstrate how to adequately combine both incident and prevalent cohorts to examine risk factors for every possible transition in studying the natural history of dementia. We adapt a four-state nonhomogeneous Markov model to characterize all transitions between different clinical stages, including plausible reversible transitions. The estimating procedure using the combined data leads to efficiency gains for every transition compared to those from the incident cohort data only.

摘要

修女研究是一项著名的老龄化和痴呆纵向流行病学研究,招募了尚未被诊断为痴呆的老年修女(即发病队列)和在入组前就患有痴呆的修女(即流行队列)。在这种疾病自然史研究中,对发病队列和流行队列的综合数据进行多状态建模是提高推断效率的理想方法。尽管多状态建模方法很重要,但由于流行样本不能提供疾病发病的确切日期,并且由于左截断而不能代表目标人群,因此在实践中很少使用针对综合数据的多状态建模方法。在本文中,我们展示了如何充分结合发病队列和流行队列,以研究痴呆自然史中每种可能的转变的风险因素。我们采用了一个四状态非齐次马尔可夫模型来描述不同临床阶段之间的所有转变,包括可能的可逆转变。与仅使用发病队列数据相比,使用综合数据的估计过程在每个转变中都提高了效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f707/10199741/5b2f439048ba/10985_2023_9602_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验