Suppr超能文献

分子动力学模拟证实了在三名印度 Glanzmann 血小板无力症患者报告的三个 αIIbβ-三叶状蛋白突变体上进行的重组表达研究。

Molecular dynamics simulations corroborate recombinant expression studies carried out on three αIIb β-propeller mutations reported in Indian Glanzmann thrombasthenia patients.

机构信息

Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India.

Laboratory of Integrative Genomics, Vellore Institute of Technology, Vellore, India.

出版信息

J Cell Biochem. 2023 Jul;124(7):989-1001. doi: 10.1002/jcb.30423. Epub 2023 May 21.

Abstract

Mutations in the αIIb β-propeller domain have long been known to disrupt heterodimerization and intracellular trafficking of αIIbβ3 complexes leading to diminished surface expression and/or function, resulting in Glanzmann thrombasthenia. Our previous study on three β-propeller mutations, namely G128S, S287L, and G357S, showed variable defects in protein transport correlated with the patient's clinical phenotypes. Pulse-chase experiments revealed differences in αIIbβ3 complex maturation among the three mutations. Hence, the current study aims to correlate conformational changes caused by each one of them. Evolutionary conservation analysis, stability analysis, and molecular dynamics simulations of the three mutant structures were carried out. Stability analysis revealed that, while G128S and G357S mutations destabilized the β-propeller structure, S287L retained the stability. Wild-type and mutant β-propeller structures, when subjected to molecular dynamics simulations, confirmed that G128S and G357S were both destabilizing in nature when compared with the wild-type and S287L based on several parameters studied, like RMSD, RMSF, Rg, FEL, PCA, secondary structure, and hydrogen bonds. In our previous study, we demonstrated that mutant S287L αIIbβ3 complexes were more stable than the wild-type αIIbβ3 complexes, as evidenced in pulse-chase experiments. These findings corroborate variable intracellular fates of mutant αIIbβ3 complexes as a result of these β-propeller mutations.

摘要

已知 αIIb β-螺旋桨结构域的突变会破坏 αIIbβ3 复合物的异二聚化和细胞内运输,导致表面表达和/或功能降低,从而导致 Glanzmann 血小板无力症。我们之前对三种 β-螺旋桨突变(即 G128S、S287L 和 G357S)的研究表明,蛋白转运缺陷的程度与患者的临床表型有关。脉冲追踪实验显示这三种突变的 αIIbβ3 复合物成熟存在差异。因此,本研究旨在研究它们各自引起的构象变化。对三种突变体结构进行了进化保守性分析、稳定性分析和分子动力学模拟。稳定性分析表明,虽然 G128S 和 G357S 突变会使 β-螺旋桨结构失稳,但 S287L 则保持稳定。对野生型和突变型 β-螺旋桨结构进行分子动力学模拟后证实,与野生型和 S287L 相比,G128S 和 G357S 本质上都是不稳定的,这可以从几个研究参数(如 RMSD、RMSF、Rg、FEL、PCA、二级结构和氢键)中得到证实。在我们之前的研究中,我们通过脉冲追踪实验表明,突变型 S287L αIIbβ3 复合物比野生型 αIIbβ3 复合物更稳定。这些发现证实了这些 β-螺旋桨突变导致突变型 αIIbβ3 复合物的细胞内命运存在差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验