State Key Lab of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou 450000, China.
State Key Lab of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
J Colloid Interface Sci. 2023 Sep 15;646:616-624. doi: 10.1016/j.jcis.2023.05.025. Epub 2023 May 9.
Pt-based multi-metallic electrocatalysts containing hetero-junctions are found to have superior catalytic performance to composition-equivalent counterparts. However, in bulk solution, controllable preparation of Pt-based hetero-junction electrocatalyst is an extremely random work owing to the complexity of solution reactions. Herein, we develop an interface-confined transformation strategy, subtly achieving Au/PtTe hetero-junction-abundant nanostructures by employing interfacial Te nanowires as sacrificing templates. By controlling the reaction conditions, composition-varied Au/PtTe can be easily obtained, such as Au/PtTe, Au/PtTe, and Au/PtTe. Moreover, each Au/PtTe hetero-junction nanostructure appears to be an array consisting of side-by-side Au/PtTe nanotrough units and can be directly used as a catalyst layer without further post-treatment. All Au/PtTe hetero-junction nanostructures show better catalytic activity towards ethanol electrooxidation than commercial Pt/C because of the combining contributions of Au/Pt hetero-junctions and the collective effects of multi-metallic elements, where Au/PtTe exhibits the best electrocatalytic performance among three Au/PtTe nanostructures owing to its optimal composition. This study may provide technically feasible guidance for further maximizing the catalytic activity of Pt-based hybrid catalysts.
含异质结的基于 Pt 的多金属电催化剂被发现具有优于组成相当的对应物的催化性能。然而,在本体溶液中,由于溶液反应的复杂性,可控制备 Pt 基异质结电催化剂是一项极其随机的工作。在此,我们开发了一种界面受限的转化策略,巧妙地利用界面 Te 纳米线作为牺牲模板,实现了 Au/PtTe 异质结丰富的纳米结构。通过控制反应条件,可以很容易地获得组成变化的 Au/PtTe,例如 Au/PtTe、Au/PtTe 和 Au/PtTe。此外,每个 Au/PtTe 异质结纳米结构似乎是由并排的 Au/PtTe 纳米槽单元组成的阵列,并且可以直接用作催化剂层,而无需进一步的后处理。所有的 Au/PtTe 异质结纳米结构在乙醇电氧化方面都表现出比商业 Pt/C 更好的催化活性,这是由于 Au/Pt 异质结和多金属元素的协同效应的共同贡献,其中 Au/PtTe 由于其最佳组成表现出三种 Au/PtTe 纳米结构中最好的电催化性能。这项研究可能为进一步最大化 Pt 基混合催化剂的催化活性提供技术上可行的指导。