Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan.
Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
Int J Biol Macromol. 2023 Jul 1;242(Pt 2):124945. doi: 10.1016/j.ijbiomac.2023.124945. Epub 2023 May 19.
Nanofibers are one of the role-playing innovations of nanotechnology. Their high surface-to-volume ratio allows them to be actively functionalized with a wide range of materials for a variety of applications. The functionalization of nanofibers with different metal nanoparticles (NPs) has been studied widely to fabricate antibacterial substrates to battle antibiotic-resistant bacteria. However, metal NPs show cytotoxicity to living cells, thereby restricting their application in biomedicine.
To minimize the cytotoxicity of NPs, biomacromolecule lignin was employed as both a reducing and capping agent to green synthesize silver (Ag) and copper (Cu) NPs on the surface of highly activated polyacryloamidoxime nanofibers. The activation of polyacrylonitrile (PAN) nanofibers via amidoximation was employed for enhanced loading of NPs to achieve superior antibacterial activity.
At first, electrospun PAN nanofibers (PANNM) were activated to produce polyacryloamidoxime nanofibers (AO-PANNM) by immersing PANNM in a solution of Hydroxylamine hydrochloride (HH) and NaCO under controlled conditions. Later, Ag and Cu ions were loaded by immersing AO-PANNM in different molar concentrations of AgNO and CuSO solutions in a stepwise manner. The reduction of Ag and Cu ions into NPs to fabricate bimetal-coated PANNM (BM-PANNM) was carried out via alkali lignin at 37 °C for 3 h in a shaking incubator with ultrasonication every 1 h.
AO-APNNM and BM-PANNM hold their nano-morphology except for some changes in fiber orientation. XRD analysis demonstrated the formation of Ag and CuNPs as evident from their respective spectral band. Maximum 8.46 ± 0.14 wt% and 0.98 ± 0.04 wt% Ag and Cu species were loaded on AO-PANNM, respectively as revealed by ICP spectrometric analysis. The hydrophobic PANNM turned into super hydrophilic, having WCA of 14 ± 3.32° after amidoximation which further reduced to 0° for BM-PANNM. However, the swelling ratio of PANNM reduced from 13.19 ± 0.18 g/g to 3.72 ± 0.20 g/g for AO-PANNM. Even at the third cycle test against S. aureus strains, 0.1Ag/Cu-PANNM, 0.3Ag/Cu-PANNM, and 0.5Ag/Cu-PANNM displayed bacterial reduction of 71.3 ± 1.64 %, 75.2 ± 1.91 %, and 77.24 ± 1.25 %, respectively. On 3rd cycle test against E. coli, above 82 % bacterial reduction was noticed for all BM-PANNM. Amidoximation increased COS-7 cell viability up to 82 %. The cell viability of 0.1Ag/Cu-PANNM, 0.3Ag/Cu-PANNM, and 0.5Ag/Cu-PANNM was found to be ∼68 %, ∼62, and 54 %, respectively. In LDH assay, almost no release of LDH was detected, suggesting the compatibility of the cell membrane in contact with BM-PANNM. The improved biocompatibility of BM-PANNM even at higher loading (%) of NPs must be ascribed to the controlled release of metal species in the early stage, antioxidant, and biocompatible lignin capping of NPs.
BM-PANNM displayed superior antibacterial activity against E. coli and S. aureus bacterial strains and acceptable biocompatibility of COS-7 cells even at higher loading (%) of Ag/CuNPs. Our findings suggest that BM-PANNM can be used as a potential antibacterial wound dressing and other antibacterial applications where sustained antibacterial activity is needed.
纳米纤维是纳米技术的创新之一。它们的高表面积与体积比允许它们与各种材料进行广泛的功能化,以应用于各种领域。为了对抗抗生素耐药菌,研究人员广泛研究了将不同金属纳米粒子(NPs)功能化到纳米纤维上,以制备抗菌基底。然而,金属 NPs 对活细胞具有细胞毒性,从而限制了它们在生物医学中的应用。
为了最大限度地降低 NPs 的细胞毒性,我们采用生物大分子木质素作为还原剂和封端剂,在高度活化的聚丙烯酰胺纳米纤维表面上绿色合成银(Ag)和铜(Cu) NPs。通过丙烯腈纳米纤维的氨氧化作用,提高 NPs 的负载量,以实现优异的抗菌活性。
首先,将聚丙烯腈纳米纤维(PANNM)浸入盐酸羟胺(HH)和 NaCO 的溶液中进行活化,生成聚丙烯酰胺纳米纤维(AO-PANNM)。然后,通过逐步浸渍不同摩尔浓度的 AgNO 和 CuSO 溶液,将 Ag 和 Cu 离子负载到 AO-PANNM 上。在 37°C 的摇床中,通过碱木质素将 Ag 和 Cu 离子还原成 NPs,以制备双金属包覆的聚丙烯酰胺纳米纤维(BM-PANNM),并每隔 1 小时进行超声处理。
AO-PANNM 和 BM-PANNM 保持其纳米形态,只是纤维取向有些变化。XRD 分析表明,Ag 和 CuNPs 的形成可以从各自的光谱带中明显看出。通过 ICP 光谱分析,分别在 AO-PANNM 上最大负载了 8.46±0.14wt%和 0.98±0.04wt%的 Ag 和 Cu 物种。经过氨氧化作用,疏水的 PANNM 变成超亲水的,水接触角(WCA)从 14±3.32°降低到 0°,对于 BM-PANNM 则进一步降低到 0°。然而,PANNM 的溶胀比从 13.19±0.18g/g 降低到 3.72±0.20g/g,对于 AO-PANNM。即使在对金黄色葡萄球菌菌株的第三次循环测试中,0.1Ag/Cu-PANNM、0.3Ag/Cu-PANNM 和 0.5Ag/Cu-PANNM 分别显示出 71.3±1.64%、75.2±1.91%和 77.24±1.25%的细菌减少率。在对大肠杆菌的第三次循环测试中,所有 BM-PANNM 的细菌减少率均超过 82%。氨氧化作用将 COS-7 细胞的存活率提高到 82%。0.1Ag/Cu-PANNM、0.3Ag/Cu-PANNM 和 0.5Ag/Cu-PANNM 的细胞存活率分别发现为约 68%、约 62%和 54%。在 LDH 测定中,几乎没有检测到 LDH 的释放,这表明接触 BM-PANNM 的细胞膜具有相容性。BM-PANNM 的生物相容性得到改善,即使在更高的 NPs 负载(%)下,也必须归因于金属物种在早期的控制释放、抗氧化和 NPs 的生物相容木质素封端。
BM-PANNM 对大肠杆菌和金黄色葡萄球菌菌株表现出优异的抗菌活性,对 COS-7 细胞具有可接受的生物相容性,即使在更高的 Ag/CuNPs 负载(%)下也是如此。我们的研究结果表明,BM-PANNM 可作为一种潜在的抗菌伤口敷料和其他需要持续抗菌活性的抗菌应用的候选材料。