College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China.
Sci Total Environ. 2023 Sep 1;889:164311. doi: 10.1016/j.scitotenv.2023.164311. Epub 2023 May 19.
Microbial fuel cells (MFCs) have been considered a promising technology for Cr removal, but they are limited by Cr-reducing biocathodes with low extracellular electron transfer (EET) and poor microbial activity. In this study, three kinds of nano-FeS hybridized electrode biofilms, obtained through synchronous biosynthesis (Sy-FeS), sequential biosynthesis (Se-FeS) and cathode biosynthesis (Ca-FeS), were applied as biocathodes for Cr removal in MFCs. The Ca-FeS biocathode exhibited the best performance due to the superior properties of biogenic nano-FeS (e.g., more synthetic amount, smaller particle size, better dispersion). The MFC with the Ca-FeS biocathode achieved the highest power density (42.08 ± 1.42 mW/m) and Cr removal efficiency (99.18 ± 0.1 %), which were 1.42 and 2.08 times as high as those of the MFC with the normal biocathode, respectively. The synergistic effects of nano-FeS and microorganisms enhanced the bioelectrochemical reduction of Cr, first realizing deep reduction of Cr to Cr in biocathode MFCs. This significantly alleviated the cathode passivation caused by Cr deposition. In addition, the hybridized nano-FeS as "armor" layers protected the microbes from toxic attack by Cr, improving the biofilm physiological activity and extracellular polymeric substances (EPS) secretion. The hybridized nano-FeS as "electron bridges" facilitated the microbial community to form a balanced, stable and syntrophic ecological structure. This study proposes a novel strategy through the cathode in-situ biosynthesis of nanomaterials to fabricate hybridized electrode biofilms with enhanced EET and microbial activity for toxic pollutant treatment in bioelectrochemical systems.
微生物燃料电池(MFC)被认为是去除 Cr 的一种很有前途的技术,但它们受到还原 Cr 的生物阴极的限制,这些阴极的细胞外电子转移(EET)效率低,微生物活性差。在这项研究中,通过同步生物合成(Sy-FeS)、顺序生物合成(Se-FeS)和阴极生物合成(Ca-FeS)获得了三种纳米-FeS 杂化电极生物膜,将其作为生物阴极应用于 MFC 中的 Cr 去除。由于生物合成纳米-FeS 的优越特性(例如,更多的合成量、更小的粒径、更好的分散性),Ca-FeS 生物阴极表现出最佳性能。具有 Ca-FeS 生物阴极的 MFC 实现了最高的功率密度(42.08±1.42 mW/m)和 Cr 去除效率(99.18±0.1%),分别是具有普通生物阴极的 MFC 的 1.42 倍和 2.08 倍。纳米-FeS 和微生物的协同作用增强了 Cr 的生物电化学还原,首先在生物阴极 MFC 中实现了 Cr 的深度还原到 Cr。这显著缓解了 Cr 沉积引起的阴极钝化。此外,杂化纳米-FeS 作为“盔甲”层保护微生物免受 Cr 的毒性攻击,提高生物膜生理活性和胞外聚合物(EPS)分泌。杂化纳米-FeS 作为“电子桥”促进微生物群落形成平衡、稳定和共营养的生态结构。本研究通过阴极原位合成纳米材料提出了一种新策略,用于制备具有增强的 EET 和微生物活性的杂化电极生物膜,以在生物电化学系统中处理有毒污染物。