Energy Systems and Infrastructure Analysis Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA.
Energy Systems and Infrastructure Analysis Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA.
Sci Total Environ. 2023 Sep 15;891:164093. doi: 10.1016/j.scitotenv.2023.164093. Epub 2023 May 19.
Medium- and heavy-duty vehicles account for a substantial portion (25 %) of transport-related greenhouse gas (GHG) emissions in the United States. Efforts to reduce these emissions focus primarily on diesel hybrids, hydrogen fuel cells, and battery electric vehicles. However, these efforts ignore the high energy intensity of producing lithium (Li)-ion batteries and the carbon fiber used in fuel-cell vehicles. Here, we conduct a life-cycle analysis to compare the impacts of the vehicle manufacturing cycle for Class 6 (pickup-and-delivery, PnD) and Class 8 (day- and sleeper-cab) trucks with diesel, electric, fuel-cell, and hybrid powertrains. We assume that all trucks were manufactured in the US in 2020 and operated over 2021-2035, and we developed a comprehensive materials inventory for all trucks. Our analysis reveals that common systems (trailer/van/box, truck body, chassis, and lift-gates) dominate the vehicle-cycle GHG emissions (64-83 % share) of diesel, hybrid, and fuel-cell powertrains. Conversely, propulsion systems (lithium-ion batteries and fuel-cell systems) contribute substantially to these emissions for electric (43-77 %) and fuel-cell powertrains (16-27 %). These vehicle-cycle contributions arise from the extensive use of steel and aluminum, the high energy/GHG intensity of producing lithium-ion batteries and carbon fiber, and the assumed battery replacement schedule for Class 8 electric trucks. A switch from the conventional diesel powertrain to alternative electric and fuel-cell powertrains causes an increase in vehicle-cycle GHG emissions (by 60-287 % and 13-29 %, respectively) but leads to substantial GHG reductions when considering the combined vehicle- and fuel-cycles (Class 6: 33-61 %, Class 8: 2-32 %), highlighting the benefits of this shift in powertrains and energy supply chain. Finally, payload variation significantly influences the relative life-cycle performance of different powertrains, while LIB cathode chemistry has a negligible effect on BET life-cycle GHGs.
在美国,中重型车辆(占运输相关温室气体(GHG)排放的 25%)。减少这些排放的努力主要集中在柴油混合动力车、氢燃料电池和电池电动汽车上。然而,这些努力忽略了生产锂离子(Li)电池和燃料电池汽车中使用的碳纤维的高能耗。在这里,我们进行了生命周期分析,以比较具有柴油、电动、燃料电池和混合动力传动系统的 6 类(接送、PnD)和 8 类(日间和睡眠舱)卡车的车辆制造周期的影响。我们假设所有卡车都是 2020 年在美国制造的,并在 2021-2035 年期间运行,我们为所有卡车开发了全面的材料清单。我们的分析表明,常见系统(拖车/面包车/箱、卡车车身、底盘和升降门)主导着柴油、混合动力和燃料电池动力系统的车辆周期 GHG 排放(64-83%的份额)。相反,对于电动(43-77%)和燃料电池动力系统(16-27%),推进系统(锂离子电池和燃料电池系统)对这些排放的贡献很大。这些车辆周期的贡献源于钢和铝的大量使用、生产锂离子电池和碳纤维的高能量/温室气体强度,以及 Class 8 电动卡车的电池更换时间表的假设。从传统的柴油动力系统向替代的电动和燃料电池动力系统的转变会导致车辆周期 GHG 排放增加(分别增加 60-287%和 13-29%),但当考虑到车辆-和燃料周期的综合影响时,会导致 GHG 大量减少(Class 6:33-61%,Class 8:2-32%),突出了这种动力系统和能源供应链转变的好处。最后,有效载荷的变化会显著影响不同动力系统的相对生命周期性能,而 LIB 阴极化学对 BET 生命周期 GHG 的影响可以忽略不计。