Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA; Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, California, USA.
Department of Physiology and Biophysics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA.
J Invest Dermatol. 2023 Nov;143(11):2243-2254.e10. doi: 10.1016/j.jid.2023.04.029. Epub 2023 May 19.
Long-term management of inflammatory skin diseases is challenging because of side effects from repeated use of systemic treatments or topical corticosteroids. This study sought to identify the mechanisms and developmental therapeutics for these diseases using genetic models and pharmacological approaches. We found that mice overexpressing SMAD7 in keratinocytes but not mice overexpressing the N-terminal domain of SMAD7 (i.e., N-SMAD7) were resistant to imiquimod-induced T helper 1/17- and T helper 2-type inflammation. We generated a Tat-PYC-SMAD7 (truncated SMAD7 protein encompassing C-terminal SMAD7 and PY motif fused with cell-penetrating Tat peptide). Topically applied Tat-PYC-SMAD7 to inflamed skin entered cells upon contact and attenuated imiquimod-, 2,4-dinitrofluorobenzene-, and tape-stripping-induced inflammation. RNA-sequencing analyses of mouse skin exposed to these insults showed that in addition to inhibiting TGFβ/NF-κB, SMAD7 blunted IL-22/signal transducer and activator of transcription 3 activation and associated pathogenesis, which is due to SMAD7 transcriptionally upregulating IL-22 antagonist IL-22RA2. Mechanistically, SMAD7 facilitated nuclear translocation and DNA binding of C/EBPβ to IL22RA2 promoter for IL22RA2 transactivation. Consistent with the observations in mice mentioned earlier, transcript levels of IL22RA2 were increased in human atopic dermatitis and psoriasis lesions with clinical remission. Our study identified the anti-inflammation functional domain of SMAD7 and suggests the mechanism and feasibility for developing SMAD7-based biologics as a topical therapy for skin inflammatory disorders.
长期管理炎症性皮肤病具有挑战性,因为重复使用全身性治疗或局部皮质类固醇会产生副作用。本研究旨在使用遗传模型和药理学方法来确定这些疾病的机制和发展治疗方法。我们发现,角质细胞中 SMAD7 过表达的小鼠(而非 N 端结构域 SMAD7 过表达的小鼠(即 N-SMAD7))对咪喹莫特诱导的 Th1/17 和 Th2 型炎症具有抗性。我们生成了 Tat-PYC-SMAD7(包含 C 端 SMAD7 和 PY 基序的截断 SMAD7 蛋白与细胞穿透 Tat 肽融合)。将 Tat-PYC-SMAD7 局部应用于发炎的皮肤,与皮肤接触后进入细胞,并减轻咪喹莫特、2,4-二硝基氟苯和胶带剥离诱导的炎症。用这些刺激物暴露的小鼠皮肤的 RNA 测序分析表明,除了抑制 TGFβ/NF-κB 外,SMAD7 还减弱了 IL-22/signal transducer and activator of transcription 3 的激活及其相关发病机制,这是由于 SMAD7 转录上调了 IL-22 拮抗剂 IL-22RA2。在机制上,SMAD7 促进了 C/EBPβ 向 IL22RA2 启动子的核易位和 DNA 结合,以进行 IL22RA2 的反式激活。与前面提到的小鼠观察结果一致,IL22RA2 的转录水平在有临床缓解的人类特应性皮炎和银屑病病变中增加。我们的研究确定了 SMAD7 的抗炎功能结构域,并提出了基于 SMAD7 的生物制剂作为治疗皮肤炎症性疾病的局部治疗方法的机制和可行性。