Rao Nishant, Paek Andrew, Contreras-Vidal Jose L, Parikh Pranav J
bioRxiv. 2023 May 8:2023.05.07.539751. doi: 10.1101/2023.05.07.539751.
When holding a coffee mug filled to the brim, we strive to avoid spilling the coffee. This ability relies on the neural processes underlying the control of finger forces on a moment-to-moment basis. The brain activity lateralized to the contralateral hemisphere averaged over a trial and across the trials is known to be associated with the magnitude of grip force applied on an object. However, the mechanistic involvement of the variability in neural signals during grip force control remains unclear. In this study, we examined the dependence of neural variability over the frontal, central, and parietal regions assessed using noninvasive electroencephalography (EEG) on grip force magnitude during an isometric force control task. We hypothesized laterally specific modulation in EEG variability with higher magnitude of the grip force exerted during grip force control. We utilized an existing EEG dataset (64 channel) comprised of healthy young adults, who performed an isometric force control task while receiving visual feedback of the force applied. The force magnitude to be exerted on the instrumented object was cued to participants during the task, and varied pseudorandomly among 5, 10, and 15% of their maximum voluntary contraction (MVC) across the trials. We quantified neural variability via sample entropy (sequence-dependent measure) and standard deviation (sequence-independent measure) of the temporal EEG signal over the frontal, central, and parietal electrodes. The EEG sample entropy over the central electrodes showed lateralized, nonlinear, localized, modulation with force magnitude. Similar modulation was not observed over frontal or parietal EEG activity, nor for standard deviation in the EEG activity. Our findings highlight specificity in neural control of grip forces by demonstrating the modulation in sequence-dependent but not sequence-independent component of EEG variability. This modulation appeared to be lateralized, spatially constrained, and functionally dependent on the grip force magnitude. We discuss the relevance of these findings in scenarios where a finer precision is essential to enable grasp application, such as prosthesis and associated neural signal integration, and propose directions for future studies investigating the mechanistic role of neural entropy in grip force control.
手持一杯满溢的咖啡时,我们会努力避免咖啡溢出。这种能力依赖于即时控制手指力量的神经过程。已知在一次试验及多次试验中,对侧半球的大脑活动平均值与施加在物体上的握力大小相关。然而,在握力控制过程中神经信号变异性的机制作用仍不清楚。在本研究中,我们使用无创脑电图(EEG)评估了等长力控制任务期间,额叶、中央和顶叶区域神经变异性对握力大小的依赖性。我们假设在握力控制过程中,随着握力大小增加,EEG变异性会出现侧向特异性调制。我们利用了一个现有的EEG数据集(64通道),该数据集由健康的年轻成年人组成,他们在接受所施加力的视觉反馈时执行等长力控制任务。在任务过程中向参与者提示要施加在仪器化物体上的力大小,并在多次试验中在其最大自主收缩(MVC)的5%、10%和15%之间伪随机变化。我们通过额叶、中央和顶叶电极上颞部EEG信号的样本熵(序列相关测量)和标准差(序列无关测量)来量化神经变异性。中央电极上的EEG样本熵显示出与力大小相关的侧向、非线性、局部调制。在额叶或顶叶EEG活动中未观察到类似调制,EEG活动的标准差也未观察到类似调制。我们的研究结果通过证明EEG变异性中序列相关而非序列无关成分的调制,突出了握力神经控制的特异性。这种调制似乎是侧向的、空间受限的,并且在功能上依赖于握力大小。我们讨论了这些发现在需要更精细精度以实现抓握应用的场景中的相关性,例如假肢和相关神经信号整合,并为未来研究神经熵在握力控制中的机制作用提出了方向。