Suppr超能文献

近场电位比群体放电更准确地指示局部神经计算。

Near-field potentials index local neural computations more accurately than population spiking.

作者信息

Tovar David A, Westerberg Jacob A, Cox Michele A, Dougherty Kacie, Wallace Mark T, Bastos André M, Maier Alexander

出版信息

bioRxiv. 2023 May 12:2023.05.11.540026. doi: 10.1101/2023.05.11.540026.

Abstract

UNLABELLED

Local field potentials (LFP) are low-frequency extracellular voltage fluctuations thought to primarily arise from synaptic activity. However, unlike highly localized neuronal spiking, LFP is spatially less specific. LFP measured at one location is not entirely generated there due to far-field contributions that are passively conducted across volumes of neural tissue. We sought to quantify how much information within the locally generated, near-field low-frequency activity (nfLFP) is masked by volume-conducted far-field signals. To do so, we measured laminar neural activity in primary visual cortex (V1) of monkeys viewing sequences of multifeatured stimuli. We compared information content of regular LFP and nfLFP that was mathematically stripped of volume-conducted far-field contributions. Information content was estimated by decoding stimulus properties from neural responses via spatiotemporal multivariate pattern analysis. Volume-conducted information differed from locally generated information in two important ways: (1) for stimulus features relevant to V1 processing (orientation and eye-of-origin), nfLFP contained more information. (2) in contrast, the volume-conducted signal was more informative regarding temporal context (relative stimulus position in a sequence), a signal likely to be coming from elsewhere. Moreover, LFP and nfLFP differed both spectrally as well as spatially, urging caution regarding the interpretations of individual frequency bands and/or laminar patterns of LFP. Most importantly, we found that population spiking of local neurons was less informative than either the LFP or nfLFP, with nfLFP containing most of the relevant information regarding local stimulus processing. These findings suggest that the optimal way to read out local computational processing from neural activity is to decode the local contributions to LFP, with significant information loss hampering both regular LFP and local spiking.

AUTHOR’S CONTRIBUTIONS: Conceptualization, D.A.T., J.A.W, and A.M.; Data Collection, J.A.W., M.A.C., K.D.; Formal Analysis, D.A.T. and J.A.W.; Data Visualization, D.A.T. and J.A.W.; Original Draft, D.A.T., J.A.W., and A.M.; Revisions and Final Draft, D.A.T., J.A.W., M.A.C., K.D., M.T.W., A.M.B., and A.M.

COMPETING INTERESTS

The authors declare no conflicts of interest.

摘要

未标注

局部场电位(LFP)是低频细胞外电压波动,被认为主要源于突触活动。然而,与高度局部化的神经元放电不同,LFP在空间上的特异性较低。在一个位置测量的LFP并非完全在该位置产生,因为存在通过神经组织体积被动传导的远场贡献。我们试图量化局部产生的近场低频活动(nfLFP)中的信息有多少被体积传导的远场信号所掩盖。为此,我们在观看多特征刺激序列的猴子的初级视觉皮层(V1)中测量了层状神经活动。我们比较了常规LFP和通过数学方法去除了体积传导远场贡献的nfLFP的信息含量。信息含量通过时空多变量模式分析从神经反应中解码刺激特性来估计。体积传导的信息在两个重要方面与局部产生的信息不同:(1)对于与V1处理相关的刺激特征(方向和起源眼),nfLFP包含更多信息。(2)相比之下,体积传导信号在时间背景(序列中相对刺激位置)方面更具信息性,这一信号可能来自其他地方。此外,LFP和nfLFP在频谱和空间上都有所不同,这就要求在解释LFP的各个频段和/或层状模式时要谨慎。最重要的是,我们发现局部神经元的群体放电比LFP或nfLFP的信息性都要低,nfLFP包含了关于局部刺激处理的大部分相关信息。这些发现表明,从神经活动中读出局部计算处理的最佳方法是解码对LFP的局部贡献,常规LFP和局部放电都因大量信息丢失而受到影响。

作者贡献

概念化,D.A.T.、J.A.W.和A.M.;数据收集,J.A.W.、M.A.C.、K.D.;形式分析,D.A.T.和J.A.W.;数据可视化,D.A.T.和J.A.W.;初稿,D.A.T.、J.A.W.和A.M.;修订和终稿,D.A.T.、J.A.W.、M.A.C.、K.D.、M.T.W.、A.M.B.和A.M.

利益冲突

作者声明无利益冲突。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验