Suppr超能文献

脂质转移蛋白与PI4KIIα启动细胞核p53-磷酸肌醇信号传导。

Lipid Transfer Proteins and PI4KIIα Initiate Nuclear p53-Phosphoinositide Signaling.

作者信息

Carrillo Noah D, Chen Mo, Wen Tianmu, Awasthi Poorwa, Wolfe Trevor J, Sterling Colin, Cryns Vincent L, Anderson Richard A

出版信息

bioRxiv. 2025 Mar 5:2023.05.08.539894. doi: 10.1101/2023.05.08.539894.

Abstract

UNLABELLED

Phosphoinositide (PIP ) messengers are present in non-membranous regions of nuclei where they are assembled into a phosphatidylinositol (PI) 3-kinase (PI3K)/Akt pathway that is distinct from the cytosolic membrane-localized pathway. In the nuclear pathway, PI kinases/phosphatases bind the p53 tumor suppressor protein (wild-type and mutant) to generate p53-PIP complexes (p53-PIP signalosome) that activate Akt by a PI3,4,5P -dependent mechanism in non-membranous regions of the nucleus. This pathway is dependent on a source of nuclear PIP s that is poorly characterized. Here we report that a subset of PI transfer proteins (PITPs), which transport PI between membranes to enable membrane-localized PIP synthesis, also interact with p53 in the nucleus upon genotoxic stress. Class I PITPs (PITPα/β) specifically supply the PI required for the generation of p53-PIP complexes and subsequent signaling in the nucleus. Additionally, the PI 4-kinase PI4KIIα binds to p53 and the PITPs to catalyze the formation of p53-PI4P. p53-PI4P is then sequentially phosphorylated to synthesize p53-PIP complexes that regulate p53 stability, nuclear Akt activation and genotoxic stress resistance. In this way, PITPα/β and PI4KIIα bind p53 and collaborate to initiate p53-PIP signaling by mechanisms that require PI transfer by PITPα/β and the catalytic activity of PI4KIIα. Moreover, the identification of these critical upstream regulators of p53-PIP signaling point to PITPα/β and PI4KIIα as novel therapeutic targets in this pathway for diseases like cancer.

SIGNIFICANCE STATEMENT

PI transfer proteins and a PI 4-kinase initiate nuclear p53-phosphoinositide signaling in membrane-free regions to promote stress resistance.

摘要

未标记

磷酸肌醇(PIP )信使存在于细胞核的非膜区域,在那里它们组装成磷脂酰肌醇(PI)3激酶(PI3K)/Akt信号通路,该通路与胞质膜定位的通路不同。在核通路中,PI激酶/磷酸酶结合p53肿瘤抑制蛋白(野生型和突变型)以生成p53-PIP 复合物(p53-PIP 信号体),该复合物通过PI3,4,5P -依赖性机制在细胞核的非膜区域激活Akt。该通路依赖于特征尚不明确的核PIP 来源。在此我们报告,一类在膜之间转运PI以实现膜定位PIP 合成的PI转运蛋白(PITP),在基因毒性应激时也会在细胞核中与p53相互作用。I类PITP(PITPα/β)特异性地提供生成p53-PIP 复合物及随后在细胞核中进行信号传导所需的PI。此外,PI 4激酶PI4KIIα与p53和PITP结合,催化形成p53-PI4P。然后p53-PI4P被依次磷酸化以合成调节p53稳定性、核Akt激活和基因毒性应激抗性的p53-PIP 复合物。通过这种方式,PITPα/β和PI4KIIα结合p53,并通过需要PITPα/β进行PI转运和PI4KIIα催化活性的机制协同启动p53-PIP 信号传导。此外,对p53-PIP 信号传导这些关键上游调节因子的鉴定表明,PITPα/β和PI4KIIα是该通路中癌症等疾病的新型治疗靶点。

意义声明

PI转运蛋白和一种PI 4激酶在无膜区域启动核p53-磷酸肌醇信号传导以促进应激抗性。

相似文献

1
Lipid Transfer Proteins and PI4KIIα Initiate Nuclear p53-Phosphoinositide Signaling.
bioRxiv. 2025 Mar 5:2023.05.08.539894. doi: 10.1101/2023.05.08.539894.
2
The poly(A) polymerase Star-PAP is regulated by stably associated phosphoinositide messengers.
J Biol Chem. 2025 Jun 24;301(8):110412. doi: 10.1016/j.jbc.2025.110412.
3
Regulation of the poly(A) Polymerase Star-PAP by a Nuclear Phosphoinositide Signalosome.
bioRxiv. 2024 Jul 2:2024.07.01.601467. doi: 10.1101/2024.07.01.601467.
5
Regulation of the MDM2-p53 Nexus by a Nuclear Phosphoinositide and Small Heat Shock Protein Complex.
bioRxiv. 2025 Apr 17:2025.04.11.648454. doi: 10.1101/2025.04.11.648454.
6
Blebs regulate phosphoinositide distribution and promote cell survival through the Septin-SH3KBP1-PI3K axis.
Am J Physiol Cell Physiol. 2025 Jul 1;329(1):C145-C158. doi: 10.1152/ajpcell.00096.2025. Epub 2025 May 30.
9
Parent-infant psychotherapy for improving parental and infant mental health.
Cochrane Database Syst Rev. 2015 Jan 8;1(1):CD010534. doi: 10.1002/14651858.CD010534.pub2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验