Suppr超能文献

固态纳米孔内形成的具有质子超高选择性的金属有机框架亚纳米通道。

Metal-Organic Framework Sub-Nanochannels Formed inside Solid-State Nanopore with Proton Ultra-High Selectivity.

作者信息

Qiu Xia, Cao Mengya, Li Yongxin

机构信息

Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China.

出版信息

Chemistry. 2023 Aug 10;29(45):e202300976. doi: 10.1002/chem.202300976. Epub 2023 Jul 12.

Abstract

Metal-Organic frameworks (MOFs) have the advantages of high porosity, angstrom-scale pore size, and unique structure. In this work, a kind of MOFs, UiO-66 and its derivatives (including aminated UiO-66-(NH ) and sulfonated UiO-66-(NH-SAG) ), were constructed on the inner surface of solid-state nanopores for ultra-selective proton transport. UiO-66 and UiO-66-(NH ) nanocrystal particles were in-situ grown at the orifice of glass nanopores firstly, which were used to investigate the ionic current responses in LiCl and HCl solutions when the monovalent anions (Cl ) were unchanged. Compared with UiO-66-modifed nanopores, the aminated MOFs modification (UiO-66-(NH ) ) can improve the proton selectivity obviously. However, when the UiO-66-(NH-SAG) nanopore is prepared by further post-modification with sulfo-acetic acid, lithium ions can hardly pass through the channel, and the interaction between protons and sulfonic acid groups can promote the transport of protons, thus achieving ultra-high selectivity to protons. This work provides a new way to achieve sub-nanochannels with high selectivity, which can widely be used in ion separation, sensing and energy conversion.

摘要

金属有机框架材料(MOFs)具有高孔隙率、埃级孔径和独特结构等优点。在本工作中,一种MOFs,即UiO-66及其衍生物(包括胺化UiO-66-(NH₂)和磺化UiO-66-(NH-SAG)),被构建在固态纳米孔的内表面用于超选择性质子传输。首先在玻璃纳米孔的孔口原位生长UiO-66和UiO-66-(NH₂)纳米晶体颗粒,用于研究在单价阴离子(Cl⁻)不变时LiCl和HCl溶液中的离子电流响应。与UiO-66修饰的纳米孔相比,胺化MOFs修饰(UiO-66-(NH₂))能显著提高质子选择性。然而,当通过用磺基乙酸进一步后修饰制备UiO-66-(NH-SAG)纳米孔时,锂离子几乎无法通过该通道,并且质子与磺酸基团之间的相互作用可促进质子传输,从而实现对质子的超高选择性。这项工作提供了一种实现具有高选择性的亚纳米通道的新方法,可广泛应用于离子分离、传感和能量转换。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验