INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France.
UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, UK.
Heredity (Edinb). 2023 Jul;131(1):68-78. doi: 10.1038/s41437-023-00622-9. Epub 2023 May 23.
How evolutionary forces interact to maintain genetic variation within populations has been a matter of extensive theoretical debates. While mutation and exogenous gene flow increase genetic variation, stabilizing selection and genetic drift are expected to deplete it. To date, levels of genetic variation observed in natural populations are hard to predict without accounting for other processes, such as balancing selection in heterogeneous environments. We aimed to empirically test three hypotheses: (i) admixed populations have higher quantitative genetic variation due to introgression from other gene pools, (ii) quantitative genetic variation is lower in populations from harsher environments (i.e., experiencing stronger selection), and (iii) quantitative genetic variation is higher in populations from heterogeneous environments. Using growth, phenological and functional trait data from three clonal common gardens and 33 populations (522 clones) of maritime pine (Pinus pinaster Aiton), we estimated the association between the population-specific total genetic variances (i.e., among-clone variances) for these traits and ten population-specific indices related to admixture levels (estimated based on 5165 SNPs), environmental temporal and spatial heterogeneity and climate harshness. Populations experiencing colder winters showed consistently lower genetic variation for early height growth (a fitness-related trait in forest trees) in the three common gardens. Within-population quantitative genetic variation was not associated with environmental heterogeneity or population admixture for any trait. Our results provide empirical support for the potential role of natural selection in reducing genetic variation for early height growth within populations, which indirectly gives insight into the adaptive potential of populations to changing environments.
进化力量如何相互作用以维持种群内的遗传变异一直是广泛理论争论的问题。虽然突变和外源基因流会增加遗传变异,但稳定选择和遗传漂变预计会使其耗尽。迄今为止,如果不考虑其他过程,如异质环境中的平衡选择,很难预测自然种群中观察到的遗传变异水平。我们旨在通过实证检验三个假设:(i) 由于来自其他基因库的基因渗入,混合种群具有更高的数量遗传变异;(ii) 来自更恶劣环境(即经历更强选择)的种群的数量遗传变异较低;(iii) 来自异质环境的种群的数量遗传变异较高。我们使用来自三个克隆的普通花园和 33 个(522 个克隆)海洋松(Pinus pinaster Aiton)种群的生长、物候和功能性状数据,估计了这些性状的种群特异性总遗传方差(即,克隆间方差)与十个与种群混合水平(基于 5165 个 SNPs 估计)、环境时空异质性和气候恶劣程度相关的种群特异性指数之间的关联。在三个普通花园中,冬季较冷的种群的早期高度生长(森林树木的一个与适应性相关的性状)的遗传变异始终较低。任何性状的种群内数量遗传变异都与环境异质性或种群混合无关。我们的结果为自然选择在降低种群内早期高度生长的遗传变异方面的潜在作用提供了经验支持,这间接洞察了种群对环境变化的适应潜力。