Opt Lett. 2023 Apr 1;48(7):1582-1585. doi: 10.1364/OL.485829.
An unfavorable inverse relationship between polarization, bandgap, and leakage always limits the ferroelectric photovoltaic performances. This work proposes a strategy of lattice strain engineering different from traditional lattice distortion by introducing a (MgNb) ion group into the B site of BiFeO films to construct local metal-ion dipoles. A giant remanent polarization of 98 µC/cm, narrower bandgap of 2.56 eV, and the decreased leakage current by nearly two orders of magnitude are synchronously obtained in the BiFe(MgNb)O film by engineering the lattice strain, breaking through the inverse relationship among these three. Thereby, the open-circuit voltage and the short-circuit current of the photovoltaic effect reach as high as 1.05 V and 2.17 µA /cm, respectively, showing an excellent photovoltaic response. This work provides an alternative strategy to enhance ferroelectric photovoltaic performances by lattice strain derived from local metal-ion dipoles.
极化、带隙和漏电之间的不利反比关系总是限制铁电光伏性能。本工作通过在 BiFeO 薄膜的 B 位引入(MgNb)离子组来构建局部金属离子偶极子,提出了一种不同于传统晶格变形的晶格应变工程策略。通过工程晶格应变,在 BiFe(MgNb)O 薄膜中同时获得了 98 µC/cm 的巨大剩余极化、更窄的 2.56 eV 带隙和近两个数量级降低的漏电流,突破了这三个因素之间的反比关系。由此,光伏效应的开路电压和短路电流分别高达 1.05 V 和 2.17 µA/cm,表现出优异的光伏响应。这项工作提供了一种通过局部金属离子偶极子产生的晶格应变来增强铁电光伏性能的替代策略。