Opt Lett. 2023 Apr 1;48(7):1618-1621. doi: 10.1364/OL.484537.
Since the paradigm shift in 2009 from pseudo-thermal ghost imaging (GI) to computational GI using a spatial light modulator, computational GI has enabled image formation via a single-pixel detector and thus has a cost-effective advantage in some unconventional wave bands. In this Letter, we propose an analogical paradigm known as computational holographic ghost diffraction (CH-GD) to shift ghost diffraction (GD) from classical to computational by using self-interferometer-assisted measurement of field correlation functions rather than intensity correlation functions. More than simply "seeing" the diffraction pattern of an unknown complex volume object with single-point detectors, CH-GD can retrieve the diffracted light field's complex amplitude and can thus digitally refocus to any depth in the optical link. Moreover, CH-GD has the potential to obtain the multimodal information including intensity, phase, depth, polarization, and/or color in a more compact and lensless manner.
自 2009 年以来,从伪热鬼成像(GI)到使用空间光调制器的计算 GI 的范式转变,计算 GI 通过单像素探测器实现了图像形成,因此在一些非传统的波段具有具有成本效益的优势。在这篇快报中,我们提出了一种类似的范例,称为计算全息鬼衍射(CH-GD),通过使用自干涉仪辅助测量场相关函数而不是强度相关函数,将鬼衍射(GD)从经典转变为计算。CH-GD 不仅仅是通过单点探测器“看到”未知复杂体积物体的衍射图案,还可以恢复衍射光场的复振幅,因此可以在光学链路中的任何深度进行数字聚焦。此外,CH-GD 有可能以更紧凑和无透镜的方式获得包括强度、相位、深度、偏振和/或颜色在内的多模态信息。