Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom.
Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
ACS Nano. 2023 Jun 13;17(11):9906-9918. doi: 10.1021/acsnano.2c09203. Epub 2023 May 24.
The arrangement of nanoscale building blocks into patterns with microscale periodicity is challenging to achieve via self-assembly processes. Here, we report on the phase-transition-driven collective assembly of gold nanoparticles in a thermotropic liquid crystal. A temperature-induced transition from the isotropic to the nematic phase under anchoring-driven planar alignment leads to the assembly of individual nanometer-sized particles into arrays of micrometer-sized agglomerates, whose size and characteristic spacing can be tuned by varying the cooling rate. Phase field simulations coupling the conserved and nonconserved order parameters exhibit a similar evolution of the morphology as the experimental observations. This fully reversible process offers control over structural order on the microscopic level and is an interesting model system for the programmable and reconfigurable patterning of nanocomposites with access to micrometer-sized periodicities.
将纳米级构建块排列成具有微尺度周期性的图案是通过自组装过程难以实现的。在这里,我们报告了在热致液晶中通过相转变驱动的金纳米粒子的集体组装。在锚定驱动的平面排列下,各向同性到向列相的温度诱导转变导致单个纳米尺寸的粒子组装成微米尺寸的聚集体的阵列,其尺寸和特征间距可以通过改变冷却速率来调节。结合守恒和非守恒序参量的相场模拟显示出与实验观察相似的形态演变。这种完全可逆的过程提供了对微观水平结构有序性的控制,并且是具有访问微米级周期性的纳米复合材料的可编程和可重构图案化的有趣模型系统。