Walter Eric D, Zhang Difan, Chen Ying, Sung Han Kee, Bazak J David, Burton Sarah, O'Harra Kathryn, Hoyt David W, Bara Jason E, Malhotra Deepika, Allec Sarah I, Glezakou Vassiliki-Alexandra, Heldebrant David J, Rousseau Roger
Pacific Northwest National Laboratory, Battelle Blvd, 99352, Richland, WA, USA.
Department of Chemical & Biological Engineering, University of Alabama, 35487-0203, Tuscaloosa, AL, USA.
ChemSusChem. 2023 Jul 7;16(13):e202300157. doi: 10.1002/cssc.202300157. Epub 2023 May 24.
Efficient direct air capture (DAC) of CO will require strategies to deal with the relatively low concentration in the atmosphere. One such strategy is to employ the combination of a CO -selective membrane coupled with a CO capture solvent acting as a draw solution. Here, the interactions between a leading water-lean carbon-capture solvent, a polyether ether ketone (PEEK)-ionene membrane, CO , and combinations were probed using advanced NMR techniques coupled with advanced simulations. We identify the speciation and dynamics of the solvent, membrane, and CO , presenting spectroscopic evidence of CO diffusion through benzylic regions within the PEEK-ionene membrane, not spaces in the ionic lattice as expected. Our results demonstrate that water-lean capture solvents provide a thermodynamic and kinetic funnel to draw CO from the air through the membrane and into the bulk solvent, thus enhancing the performance of the membrane. The reaction between the carbon-capture solvent and CO produces carbamic acid, disrupting interactions between the imidazolium (Im ) cations and the bistriflimide anions within the PEEK-ionene membrane, thereby creating structural changes through which CO can diffuse more readily. Consequently, this restructuring results in CO diffusion at the interface that is faster than CO diffusion in the bulk carbon-capture solvent.
高效直接空气捕集(DAC)二氧化碳需要应对大气中相对较低浓度的策略。一种这样的策略是采用二氧化碳选择性膜与用作汲取溶液的二氧化碳捕集溶剂相结合的方法。在此,使用先进的核磁共振技术结合先进的模拟方法,探究了一种主要的贫水碳捕集溶剂、聚醚醚酮(PEEK)-紫罗碱膜、二氧化碳以及它们的组合之间的相互作用。我们确定了溶剂、膜和二氧化碳的形态及动力学,提供了二氧化碳通过PEEK-紫罗碱膜内苄基区域扩散的光谱证据,而非如预期那样通过离子晶格中的空隙扩散。我们的结果表明,贫水捕集溶剂提供了一个热力学和动力学通道,将空气中的二氧化碳通过膜吸入到本体溶剂中,从而提高了膜的性能。碳捕集溶剂与二氧化碳之间的反应生成氨基甲酸,破坏了PEEK-紫罗碱膜内咪唑鎓(Im⁺)阳离子与双三氟甲磺酰亚胺阴离子之间的相互作用,从而产生结构变化,使二氧化碳能够更轻易地扩散通过。因此,这种结构重组导致界面处的二氧化碳扩散速度比本体碳捕集溶剂中的二氧化碳扩散速度更快。