Department of Chemical Engineering and Materials Science, Doshisha University, 6100321, Kyoto, Japan.
Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153-8902, Japan.
Small. 2023 Sep;19(38):e2302193. doi: 10.1002/smll.202302193. Epub 2023 May 24.
In this study, a one-step method is discussed for producing uniform cell-sized microgels using glass capillaries filled with a binary polymer blend of polyethylene glycol (PEG) and gelatin. Upon decreasing temperature, phase separation of the PEG/gelatin blends and gelation of gelatin occur, and then the polymer blend forms linearly aligned, uniformly sized gelatin microgels in the glass capillary. When DNA is added to the polymer solution, gelatin microgels entrapping DNA are spontaneously formed, and the DNA prevents the coalescence of the microdroplets even at temperatures above the melting point. This novel method to form uniform cell-sized microgels may be applicable to other biopolymers. This method is expected to contribute to diverse materials science via biopolymer microgels and biophysics and synthetic biology through cellular models containing biopolymer gels.
在这项研究中,讨论了一种使用填充有聚乙二醇(PEG)和明胶的二元聚合物共混物的玻璃毛细管一步法来制备均匀细胞大小的微凝胶。当温度降低时,PEG/明胶共混物发生相分离和明胶凝胶化,然后聚合物共混物在玻璃毛细管中形成线性排列的、均匀尺寸的明胶微凝胶。当将 DNA 添加到聚合物溶液中时,会自发形成包埋 DNA 的明胶微凝胶,并且即使在高于熔点的温度下,DNA 也会阻止微滴的聚结。这种形成均匀细胞大小的微凝胶的新方法可能适用于其他生物聚合物。通过生物聚合物微凝胶和包含生物聚合物凝胶的细胞模型的生物物理和合成生物学,这种方法有望为多种材料科学做出贡献。