Changchun Institute of Optics, Fine Mechanics & Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, People's Republic of China.
University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
ACS Nano. 2023 Jun 13;17(11):10938-10946. doi: 10.1021/acsnano.3c02819. Epub 2023 May 25.
Chiral nanostructures are much desired in many applications, such as chiral sensing, chiroptics, chiral electronics, and asymmetric catalysis. In building chiral nanostructures, the on-surface metal-organic self-assembly is naturally suitable in obtaining atomically precise structures, but that is under the premise that there are enantioselective assembly strategies to create large-scale homochiral networks. Here, we report an approach to build chiral metal-organic networks using 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) molecules and low-cost sodium chloride (NaCl) in a controllable manner on Au(111). The chirality induction and transfer processes during network evolution with increased Na ion ratios were captured by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) methodologies. Our findings show that Na ion incorporation into achiral PTCDA molecules partially breaks intermolecular hydrogen bonds and coordinates with carboxyl oxygen atoms, which initiates a collective sliding motion of PTCDA molecules along specific directions. Consequently, "molecular columns" linked by hydrogen bonds were formed in the rearranged Na-PTCDA networks. Notably, the direction of Na ion incorporation determines the chiral characteristic by guiding the sliding direction of the molecular columns, and chirality can be transferred from NaPTCDA to NaPTCDA networks. Furthermore, our results indicate that the chirality transferring process is disrupted when intermolecular hydrogen bonds are entirely replaced by Na ions at a high Na dopant concentration. Our study provides fundamental insights into the mechanism of coordination-induced chirality in metal-organic self-assemblies and offers potential strategies for synthesizing large homochiral metal-organic networks.
手性纳米结构在许多应用中都备受期待,例如手性传感、手性光子学、手性电子学和不对称催化。在构建手性纳米结构时,表面金属有机自组装在获得原子精度结构方面具有天然优势,但前提是存在对映选择性组装策略来构建大规模的同手性网络。在这里,我们报告了一种使用 3,4,9,10-苝四羧酸二酐(PTCDA)分子和廉价的氯化钠(NaCl)在可控条件下在 Au(111)表面构建手性金属有机网络的方法。通过扫描隧道显微镜(STM)、X 射线光电子能谱(XPS)和密度泛函理论(DFT)方法,捕获了网络演化过程中手性诱导和传递过程。我们的研究结果表明,Na 离子掺入非手性 PTCDA 分子中会部分破坏分子间氢键并与羧基氧原子配位,这会引发 PTCDA 分子沿着特定方向的集体滑动运动。因此,在重新排列的 Na-PTCDA 网络中形成了由氢键连接的“分子柱”。值得注意的是,Na 离子掺入的方向通过引导分子柱的滑动方向决定了手性特征,并且手性可以从 NaPTCDA 传递到 NaPTCDA 网络。此外,我们的结果表明,当高浓度的 Na 掺杂剂完全用 Na 离子取代分子间氢键时,手性传递过程会被破坏。我们的研究为金属有机自组装中配位诱导手性的机制提供了基本的见解,并为合成大规模同手性金属有机网络提供了潜在的策略。