Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, 00000, China.
Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 00000, China.
Environ Sci Technol. 2023 Jun 6;57(22):8414-8425. doi: 10.1021/acs.est.2c09122. Epub 2023 May 25.
Pharmaceuticals and personal care products (PPCPs) are ubiquitous in sewage, adversely affecting ecosystems and human health. In this study, an S-scheme magnetic ZnFeO/ammoniated MoS (ZnFeO/A-MoS) heterojunction as a visible-light-driven PMS activator for PPCP degradation was developed. ZnFeO/A-MoS achieves improved photocatalytic activity because the construction of S-scheme heterojunction promotes the separation of the highly reductive photogenerated electrons. The optimized photocatalyst (10%-ZnFeO/A-MoS, 0.2 g/L) achieved 100% removal of 2 ppm carbamazepine (CBZ) within 2.5 min at a PMS dosage of 0.5 mM (initial pH 7.0). Mechanistic investigation revealed that the separated electrons to the ZnFeO reactive center of the heterojunction facilitated PMS activation and generated SO as the dominant reactive species for CBZ degradation. The system exhibited excellent practicability in various samples of actual sewage, where most sewage components negatively impacted CBZ degradation. Further, the chloride ions in high-salinity sewage could be activated to generate additional reactive chlorine species for PPCP degradation. The heterojunction possesses outstanding reusability and stability in treating various water conditions. This work provides mechanistic and practical perspectives in developing novel S-type heterojunctions for recalcitrant pollutant treatment.
药品和个人护理产品(PPCPs)在污水中普遍存在,对生态系统和人类健康造成不利影响。本研究开发了一种 S 型磁性 ZnFeO/氨化 MoS(ZnFeO/A-MoS)异质结作为可见光驱动 PMS 激活剂,用于 PPCP 降解。ZnFeO/A-MoS 实现了提高的光催化活性,因为 S 型异质结的构建促进了高还原性光生电子的分离。优化的光催化剂(10%-ZnFeO/A-MoS,0.2 g/L)在 PMS 剂量为 0.5 mM(初始 pH 7.0)时,在 2.5 分钟内实现了 2 ppm 卡马西平(CBZ)的 100%去除。机理研究表明,分离到异质结 ZnFeO 反应中心的电子有利于 PMS 的活化,并生成 SO 作为 CBZ 降解的主要活性物质。该系统在实际污水的各种样品中表现出优异的实用性,其中大多数污水成分对 CBZ 的降解有负面影响。此外,高盐污水中的氯离子可以被激活,以生成额外的活性氯物种,用于 PPCP 降解。该异质结在处理各种水质条件下具有出色的可重复使用性和稳定性。这项工作为开发用于处理难降解污染物的新型 S 型异质结提供了机制和实际的观点。