Suppr超能文献

一种用于处理项目级缺失数据的综合得分的因子回归模型。

A factored regression model for composite scores with item-level missing data.

作者信息

Alacam Egamaria, Enders Craig K, Du Han, Keller Brian T

机构信息

Department of Psychology, University of California, Los Angeles.

Department of Educational Psychology, University of Texas at Austin.

出版信息

Psychol Methods. 2025 Jun;30(3):462-481. doi: 10.1037/met0000584. Epub 2023 May 25.

Abstract

Composite scores are an exceptionally important psychometric tool for behavioral science research applications. A prototypical example occurs with self-report data, where researchers routinely use questionnaires with multiple items that tap into different features of a target construct. Item-level missing data are endemic to composite score applications. Many studies have investigated this issue, and the near-universal theme is that item-level missing data treatment is superior because it maximizes precision and power. However, item-level missing data handling can be challenging because missing data models become very complex and suffer from the same "curse of dimensionality" problem that plagues the estimation of psychometric models. A good deal of recent missing data literature has focused on advancing factored regression specifications that use a sequence of regression models to represent the multivariate distribution of a set of incomplete variables. The purpose of this paper is to describe and evaluate a factored specification for composite scores with incomplete item responses. We used a series of computer simulations to compare the proposed approach to gold standard multiple imputation and latent variable modeling approaches. Overall, the simulation results suggest that this new approach can be very effective, even under extreme conditions where the number of items is very large (or even exceeds) the sample size. A real data analysis illustrates the application of the method using software available on the internet. (PsycInfo Database Record (c) 2025 APA, all rights reserved).

摘要

综合分数是行为科学研究应用中一种极其重要的心理测量工具。一个典型的例子出现在自我报告数据中,研究人员经常使用包含多个项目的问卷来探究目标构念的不同特征。项目层面的缺失数据在综合分数应用中很常见。许多研究都调查了这个问题,几乎普遍的观点是,项目层面的缺失数据处理更具优势,因为它能使精度和功效最大化。然而,项目层面的缺失数据处理可能具有挑战性,因为缺失数据模型会变得非常复杂,并且会遭受困扰心理测量模型估计的相同“维度诅咒”问题。近期大量的缺失数据文献都聚焦于推进因子回归规范,即使用一系列回归模型来表示一组不完整变量的多元分布。本文的目的是描述和评估针对具有不完整项目反应的综合分数的因子规范。我们使用了一系列计算机模拟,将所提出的方法与黄金标准多重填补和潜变量建模方法进行比较。总体而言,模拟结果表明,即使在项目数量非常大(甚至超过)样本量的极端条件下,这种新方法也可能非常有效。一项实际数据分析展示了使用互联网上可用软件应用该方法的情况。(《心理学文摘数据库记录》(c)2025 美国心理学会,保留所有权利)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验