Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry, and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA.
Acc Chem Res. 2023 Jun 20;56(12):1421-1432. doi: 10.1021/acs.accounts.3c00059. Epub 2023 May 25.
ConspectusClosed-loop cycling of green hydrogen is a promising alternative to the current hydrocarbon economy for mitigating the energy crisis and environmental pollution. It stores energy from renewable energy sources like solar, wind, and hydropower into the chemical bond of dihydrogen (H) via (photo)electrochemical water splitting, and then the stored energy can be released on demand through the reverse reactions in H-O fuel cells. The sluggish kinetics of the involved half-reactions like hydrogen evolution reaction (HER), oxygen evolution reaction (OER), hydrogen oxidation reaction (HOR), and oxygen reduction reaction (ORR) limit its realization. Moreover, considering the local gas-liquid-solid triphase microenvironments during H generation and utilization, rapid mass transport and gas diffusion are critical as well. Accordingly, developing cost-effective and active electrocatalysts featuring three-dimensional hierarchically porous structures are highly desirable to promote the energy conversion efficiency. Traditionally, the synthetic approaches of porous materials include soft/hard templating, sol-gel, 3D printing, dealloying, and freeze-drying, which often need tedious procedures, high temperature, expensive equipment, and/or harsh physiochemical conditions. In contrast, dynamic electrodeposition on bubbles using the formed bubbles as templates can be conducted at ambient conditions with an electrochemical workstation. Moreover, the whole preparation process can be finished within minutes/hours, and the resulting porous materials can be employed as catalytic electrodes directly, avoiding the use of polymeric binders like Nafion and the consequent issues like limited catalyst loading, reduced conductivity, and inhibited mass transport.In this Account, we summarize our contributions to the dynamic electrodeposition on bubbles toward advanced porous electrocatalysts for green hydrogen cycling. These dynamic electrosynthesis strategies include potentiodynamic electrodeposition that linearly scans the applied potentials, galvanostatic electrodeposition that fixes the applied currents, and electroshock which quickly switches the applied potentials. The resulting porous electrocatalysts range from transition metals to alloys, nitrides, sulfides, phosphides, and their hybrids. We mainly focus on the 3D porosity design of the electrocatalysts by tuning the electrosynthesis parameters to tailor the behaviors of bubble co-generation and thus the reaction interface. Then, their electrocatalytic applications for HER, OER, overall water splitting (OWS), biomass oxidation (to replace OER), and HOR are introduced, with a special emphasis on the porosity-promoted activity. Finally, the remaining challenges and future perspective are also discussed. We hope this Account will encourage more efforts into this attractive research field of dynamic electrodeposition on bubbles for various energy catalytic reactions like carbon dioxide/monoxide reduction, nitrate reduction, methane oxidation, chlorine evolution, and others.
闭环循环制绿氢是一种有前途的替代当前碳氢经济的方法,可用于缓解能源危机和环境污染。它通过(光电)电化学水分解将来自太阳能、风能和水力发电等可再生能源的能量储存在氢气(H2)的化学键中,然后可以通过 H-O 燃料电池中的逆反应按需释放储存的能量。涉及的半反应(如析氢反应(HER)、析氧反应(OER)、氢氧化反应(HOR)和氧还原反应(ORR))的动力学缓慢限制了其实现。此外,考虑到 H 生成和利用过程中的局部气-液-固三相微环境,快速的质量传输和气体扩散也很关键。因此,开发具有成本效益和活性的三维分级多孔结构的电催化剂对于提高能量转换效率是非常理想的。传统上,多孔材料的合成方法包括软/硬模板、溶胶-凝胶、3D 打印、脱合金和冷冻干燥,这些方法通常需要繁琐的步骤、高温、昂贵的设备和/或苛刻的物理化学条件。相比之下,使用形成的气泡作为模板的在气泡上的动态电沉积可以在环境条件下使用电化学工作站进行。此外,整个制备过程可以在几分钟/小时内完成,所得多孔材料可直接用作催化电极,避免使用 Nafion 等聚合物粘结剂,从而避免催化剂负载量有限、导电性降低和传质受限等问题。
在本账目中,我们总结了我们在使用形成的气泡作为模板的动态电沉积方面的贡献,以开发用于绿色氢循环的先进多孔电催化剂。这些动态电合成策略包括线性扫描施加电位的恒电位电沉积、固定施加电流的恒电流电沉积和快速切换施加电位的电休克。所得多孔电催化剂的范围包括过渡金属及其合金、氮化物、硫化物、磷化物及其混合物。我们主要通过调整电合成参数来专注于电催化剂的 3D 孔隙设计,以调节气泡共生成的行为,从而调节反应界面。然后,介绍了它们在 HER、OER、整体水分解(OWS)、生物质氧化(替代 OER)和 HOR 中的电催化应用,特别强调了孔隙率促进的活性。最后,还讨论了剩余的挑战和未来展望。我们希望本账目将鼓励更多的努力进入这个有吸引力的动态电沉积在气泡上的研究领域,用于各种能源催化反应,如二氧化碳/一氧化碳还原、硝酸盐还原、甲烷氧化、氯的进化等。