Department of Chemistry, Collage of Science, Qassim University, Buraydah, Kingdom of Saudi Arabia; Department of Chemistry, Faculty of Science, Benha University, P.O.Box 13518, Benha, Egypt.
Department of Chemistry, Faculty of Science, Benha University, P.O.Box 13518, Benha, Egypt.
J Mol Graph Model. 2023 Sep;123:108525. doi: 10.1016/j.jmgm.2023.108525. Epub 2023 May 13.
Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) approaches were applied to explore the effect of central transition metals and the dye/TiO interface on dye-sensitized solar cell (DSSC) performance and supply a promising way to estimate and screen possible candidates for DSSC applications. The interaction properties, bonding characteristics, sensitized mechanisms, charge transfer, frontier molecular orbitals, energy gap, partial densities of states (PDOS), non-covalent interactions (NCI), and electronic absorption spectra were examined and analyzed to provide the photovoltaic characteristics of Sc, Cu, and Ti tetrasulfonic acid phthalocyanine sensitizer@TiO interface in both gas phase and polar solvent as acetonitrile. The interfacial of TiPc-(SOH) with TiO, which facilitates the driving force for the electron injection of photosensitizers (ΔG), increases the charge separation, open-circuit voltage (V), and high light-harvesting efficiency (LHE) values. However, minimize the charge recombination, lifetime of the excited state (τ), regeneration driving force (ΔG). Our results reveal that TiPc-(SOH)@TiO is superior to those of ScPc-(SOH), CuPc-(SOH), TiPc-(SOH) and Pc-(SOH)/TiO, indicating the novel TiPc-(SOH)@TiO interface could be promising candidates for DSSC photovoltaic devices performance. In addition, the static mean polarizability and first hyperpolarizability of all six dyes elucidated that the TiPc-(SOH)@TiO interface can be regarded as a potential performer in non-linear optical (NLO) properties. These theoretical identifications may provide novel perspectives and instructions for future experimental researchers to promote the synthesis and application of TiPc-(SOH)@TiO interfaces to improve the photo-to-current conversion efficiency.
密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)方法被应用于探索中心过渡金属和染料/TiO2 界面对染料敏化太阳能电池(DSSC)性能的影响,并为估计和筛选 DSSC 应用的可能候选物提供了有前途的方法。研究了相互作用性质、成键特性、敏化机制、电荷转移、前沿分子轨道、能隙、部分态密度(PDOS)、非共价相互作用(NCI)和电子吸收光谱,以提供 Sc、Cu 和 Ti 四磺酸酞菁敏化剂@TiO2 在气相和极性溶剂(如乙腈)中的光伏特性。TiPc-(SOH)与 TiO2 的界面促进了光致剂电子注入的驱动力(ΔG),增加了电荷分离、开路电压(V)和高光捕获效率(LHE)值。然而,最小化了电荷复合、激发态寿命(τ)和再生驱动力(ΔG)。我们的结果表明,TiPc-(SOH)@TiO2 优于 ScPc-(SOH)、CuPc-(SOH)、TiPc-(SOH)和 Pc-(SOH)/TiO2,表明新型 TiPc-(SOH)@TiO2 界面可能是 DSSC 光伏器件性能的有前途的候选物。此外,所有六种染料的静态平均极化率和一阶超极化率表明,TiPc-(SOH)@TiO2 界面可以被视为非线性光学(NLO)性质的潜在表现者。这些理论鉴定可能为未来的实验研究人员提供新的视角和指导,以促进 TiPc-(SOH)@TiO2 界面的合成和应用,提高光电流转换效率。