Suppr超能文献

证据理论中冲突数据融合的一种新的基本概率赋值生成与组合方法。

A new basic probability assignment generation and combination method for conflict data fusion in the evidence theory.

机构信息

School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.

School of Computer Science, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.

出版信息

Sci Rep. 2023 May 25;13(1):8443. doi: 10.1038/s41598-023-35195-4.

Abstract

Dempster-Shafer evidence theory is an effective method to deal with information fusion. However, how to deal with the fusion paradoxes while using the Dempster's combination rule is still an open issue. To address this issue, a new basic probability assignment (BPA) generation method based on the cosine similarity and the belief entropy was proposed in this paper. Firstly, Mahalanobis distance was used to measure the similarity between the test sample and BPA of each focal element in the frame of discernment. Then, cosine similarity and belief entropy were used respectively to measure the reliability and uncertainty of each BPA to make adjustments and generate a standard BPA. Finally, Dempster's combination rule was used for the fusion of new BPAs. Numerical examples were used to prove the effectiveness of the proposed method in solving the classical fusion paradoxes. Besides, the accuracy rates of the classification experiments on datasets were also calculated to verify the rationality and efficiency of the proposed method.

摘要

证据理论是一种有效的信息融合方法。然而,如何在使用Dempster 组合规则时处理融合悖论仍然是一个悬而未决的问题。为了解决这个问题,本文提出了一种基于余弦相似度和置信熵的新基本概率分配(BPA)生成方法。首先,使用马氏距离来测量测试样本与识别框架中每个焦点元素的 BPA 之间的相似性。然后,分别使用余弦相似度和置信熵来测量每个 BPA 的可靠性和不确定性,以进行调整并生成标准 BPA。最后,使用 Dempster 组合规则对新的 BPA 进行融合。数值实例证明了该方法在解决经典融合悖论方面的有效性。此外,还计算了数据集上分类实验的准确率,以验证该方法的合理性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eaee/10212963/c7e74dc6f3a7/41598_2023_35195_Fig1_HTML.jpg

相似文献

6
Conflicting evidence combination based on uncertainty measure and distance of evidence.
Springerplus. 2016 Jul 29;5(1):1217. doi: 10.1186/s40064-016-2863-4. eCollection 2016.
8
Measuring Uncertainty in the Negation Evidence for Multi-Source Information Fusion.
Entropy (Basel). 2022 Nov 2;24(11):1596. doi: 10.3390/e24111596.

本文引用的文献

1
Measuring Uncertainty in the Negation Evidence for Multi-Source Information Fusion.
Entropy (Basel). 2022 Nov 2;24(11):1596. doi: 10.3390/e24111596.
2
Deng Entropy Weighted Risk Priority Number Model for Failure Mode and Effects Analysis.
Entropy (Basel). 2020 Feb 28;22(3):280. doi: 10.3390/e22030280.
3
4
Combination of Transferable Classification With Multisource Domain Adaptation Based on Evidential Reasoning.
IEEE Trans Neural Netw Learn Syst. 2021 May;32(5):2015-2029. doi: 10.1109/TNNLS.2020.2995862. Epub 2021 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验