Materials and Mechanical Engineering, Centre for Advanced Steels Research, University of Oulu, Oulu, 90014, Finland.
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India.
Nanoscale. 2023 Jun 15;15(23):10004-10016. doi: 10.1039/d3nr00816a.
The essences of the quenching and partitioning (Q&P) process are to stabilize the finely divided retained austenite (RA) carbon (C) partitioning from supersaturated martensite during partitioning. Competitive reactions, , transition carbide precipitation, C segregation, and decomposition of austenite, might take place concurrently during partitioning. In order to maintain the high volume fraction of RA, it is crucial to suppress the carbide precipitation sufficiently. Since silicon (Si) in the cementite (FeC) is insoluble, alloying Si in adequate concentrations prolongs its precipitation during the partitioning step. Consequently, C partitioning facilitates the desired chemical stabilization of RA. To elucidate the mechanisms of formation of transition (FeC) carbides as well as cementite, (FeC), besides the transformation of transition carbides to more stable during the quenching and partitioning (Q&P) process, samples of 0.4 wt% C steels tailored with different Si contents were extensively characterized for microstructural evolution at different partitioning temperatures () using high resolution transmission electron microscopy (HR-TEM) and three-dimensional atom probe tomography (3D-APT). While 1.5 wt% Si in the steel allowed only the formation of carbides even at a high of 300 °C, reduction in Si content to 0.75 wt% only partially stabilized carbides, allowing limited → transformation. With 0.25 wt% Si, only was present in the microstructure, suggesting a → transition during the early partitioning stage, followed by coarsening due to enhanced growth kinetics at 300 °C. Although carbides precipitated in martensite under paraequilibrium conditions at 200 °C, carbides precipitated under negligible partitioning local equilibrium conditions at 300 °C. Competition with the formation of orthorhombic and precipitation further examined (density functional theory, DFT) computation and a similar probability of formation/thermodynamic stability were obtained. With an increase in Si concentration, the cohesive energy decreased when Si atoms occupied C positions, indicating decreasing stability. Overall, the thermodynamic prediction was in accord with the HR-TEM and 3D-APT results.
淬火配分(Q&P)工艺的本质是在配分过程中稳定过饱和马氏体中精细分散的残余奥氏体(RA)碳(C)分配。在配分过程中,可能会同时发生竞争反应、过渡碳化物沉淀、C 偏析和奥氏体分解。为了保持高的 RA 体积分数,必须充分抑制碳化物的沉淀。由于硅(Si)在渗碳体(FeC)中是不可溶的,因此在适当的浓度下添加合金 Si 可以延长其在配分阶段的沉淀。因此,C 配分有利于 RA 的化学稳定化。为了阐明在淬火配分(Q&P)过程中形成过渡碳化物(FeC)和渗碳体(FeC)的机制,以及过渡碳化物向更稳定的转变,对具有不同 Si 含量的 0.4wt% C 钢进行了广泛的研究,使用高分辨率透射电子显微镜(HR-TEM)和三维原子探针层析术(3D-APT)在不同的配分温度()下对微观结构演变进行了研究。尽管钢中的 1.5wt% Si 即使在 300°C 的高 下也只允许形成 碳化物,但将 Si 含量降低至 0.75wt% 仅部分稳定了 碳化物,允许有限的 → 转变。在 Si 含量为 0.25wt%的情况下,仅在微观结构中存在 ,这表明在早期配分阶段发生了 → 转变,随后由于在 300°C 下增强了生长动力学而导致粗化。尽管在 200°C 下在马氏体中处于准平衡条件下沉淀了 碳化物,但在 300°C 下在可忽略不计的配分局部平衡条件下沉淀了 碳化物。与正交相 和 的形成竞争进一步考察了 (密度泛函理论,DFT)计算,并获得了相似的形成/热力学稳定性概率。随着 Si 浓度的增加,当 Si 原子占据 C 位置时,结合能降低,表明稳定性降低。总的来说,热力学预测与 HR-TEM 和 3D-APT 结果一致。