Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts.
Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, Massachusetts.
Curr Protoc. 2023 May;3(5):e793. doi: 10.1002/cpz1.793.
The microtubule cytoskeleton is essential for various biological processes such as the intracellular distribution of molecules and organelles, cell morphogenesis, chromosome segregation, and specification of the location of contractile ring formation. Distinct cell types contain microtubules with different extents of stability. For example, microtubules in neurons are highly stabilized to support organelle (or vesicular) transport over large distances, and microtubules in motile cells are more dynamic. In some cases, such as the mitotic spindle, both dynamic and stable microtubules coexist. Alteration of microtubule stability is connected to disease states, making understanding microtubule stability an important area of research. Methods to measure microtubule stability in mammalian cells are described here. Together, these approaches allow microtubule stability to be measured qualitatively or semiquantitatively following staining for post-translational modifications of tubulin or treating cells with microtubule destabilizing agents such as nocodazole. Microtubule stability can also be measured quantitatively by performing fluorescence recovery after photobleaching or fluorescence photoactivation of tubulin in live cells. These methods should be helpful for those seeking to understand microtubule dynamics and stabilization. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Fixing and staining cells for tubulin post-translational modifications Basic Protocol 2: Evaluating microtubule stability following treatment with nocodazole in live or fixed cells Basic Protocol 3: Measurement of microtubule dynamic turnover by quantification of fluorescence recovery after photobleaching Basic Protocol 4: Measurement of microtubule dynamic turnover by quantification of dissipation of fluorescence after photoactivation.
微管细胞骨架对于各种生物过程至关重要,如分子和细胞器的细胞内分布、细胞形态发生、染色体分离以及收缩环形成位置的指定。不同的细胞类型含有稳定性不同的微管。例如,神经元中的微管高度稳定,以支持细胞器(或小泡)在长距离上的运输,而运动细胞中的微管则更具动态性。在某些情况下,如有丝分裂纺锤体,动态和稳定的微管共存。微管稳定性的改变与疾病状态有关,因此了解微管稳定性是一个重要的研究领域。本文介绍了测量哺乳动物细胞中微管稳定性的方法。这些方法可定性或半定量地测量微管稳定性,方法是对微管蛋白的翻译后修饰进行染色,或用微管去稳定剂(如诺考达唑)处理细胞。也可以通过在活细胞中对微管蛋白进行光漂白后荧光恢复或光激活荧光定量测量微管稳定性。这些方法应该有助于那些试图了解微管动力学和稳定性的人。©2023 年 Wiley 期刊 LLC。基本方案 1:固定和染色细胞以检测微管蛋白翻译后修饰基本方案 2:在活细胞或固定细胞中用诺考达唑处理后评估微管稳定性基本方案 3:通过光漂白后荧光恢复的定量测量来测量微管动态周转率基本方案 4:通过光激活荧光衰减的定量测量来测量微管动态周转率