Suppr超能文献

番鸭精液质量评估的机器学习方法

Machine Learning Approach for Muscovy Duck () Semen Quality Assessment.

作者信息

Abadjieva Desislava, Georgiev Boyko, Gerzilov Vasko, Tsvetkova Ilka, Taushanova Paulina, Todorova Krassimira, Hayrabedyan Soren

机构信息

Department of Immunoneuroendocrinology, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Bul. Tzarigradsko Shosse 73, 1113 Sofia, Bulgaria.

Department of Animal Science, Agricultural University, 12, Mendeleev Str., 4000 Plovdiv, Bulgaria.

出版信息

Animals (Basel). 2023 May 10;13(10):1596. doi: 10.3390/ani13101596.

Abstract

This study aimed to develop a comprehensive approach for assessing fresh ejaculate from Muscovy duck () drakes to fulfil the requirements of artificial insemination in farm practices. The approach combines sperm kinetics (CASA) with non-kinetic parameters, such as vitality, enzyme activities (alkaline phosphatase (AP), creatine kinase (CK), lactate dehydrogenase (LDH), and γ-glutamyl-transferase (GGT)), and total DNA methylation as training features for a set of machine learning (ML) models designed to enhance the predictive capacity of sperm parameters. Samples were classified based on their progressive motility and DNA methylation features, exhibiting significant differences in total and progressive motility, curvilinear velocity (VCL), velocity of the average path (VAP), linear velocity (VSL), amplitude of lateral head displacement (ALH), beat-cross frequency (BCF), and live normal sperm cells in favour of fast motility ones. Additionally, there were significant differences in enzyme activities for AP and CK, with correlations to LDH and GGT levels. Although motility showed no correlation with total DNA methylation, ALH, wobble of the curvilinear trajectory (WOB), and VCL were significantly different in the newly introduced classification for "suggested good quality", where both motility and methylation were high. The performance differences observed while training various ML classifiers using different feature subsets highlight the importance of DNA methylation for achieving more accurate sample quality classification, even though there is no correlation between motility and DNA methylation. The parameters ALH, VCL, triton extracted LDH, and VAP were top-ranking for "suggested good quality" predictions by the neural network and gradient boosting models. In conclusion, integrating non-kinetic parameters into machine-learning-based sample classification offers a promising approach for selecting kinetically and morphologically superior duck sperm samples that might otherwise be hindered by a predominance of lowly methylated cells.

摘要

本研究旨在开发一种全面的方法来评估番鸭公鸭的新鲜精液,以满足养殖场人工授精的要求。该方法将精子动力学(计算机辅助精子分析,CASA)与活力、酶活性(碱性磷酸酶(AP)、肌酸激酶(CK)、乳酸脱氢酶(LDH)和γ-谷氨酰转移酶(GGT))以及总DNA甲基化等非动力学参数相结合,作为一组机器学习(ML)模型的训练特征,以提高精子参数的预测能力。根据样本的前向运动性和DNA甲基化特征进行分类,结果显示在总运动性和前向运动性、曲线速度(VCL)、平均路径速度(VAP)、直线速度(VSL)、头部侧向位移幅度(ALH)、鞭打交叉频率(BCF)以及活的正常精子细胞方面存在显著差异,快速运动的样本更具优势。此外,AP和CK的酶活性存在显著差异,且与LDH和GGT水平相关。尽管运动性与总DNA甲基化无相关性,但在新引入的“建议优质”分类中,当运动性和甲基化水平都较高时,ALH、曲线轨迹摆动(WOB)和VCL存在显著差异。在使用不同特征子集训练各种ML分类器时观察到的性能差异突出了DNA甲基化对于实现更准确样本质量分类的重要性,尽管运动性与DNA甲基化之间没有相关性。神经网络和梯度提升模型在“建议优质”预测中,参数ALH、VCL、曲拉通提取的LDH和VAP排名靠前。总之,将非动力学参数整合到基于机器学习的样本分类中,为选择在动力学和形态学上更优的鸭精子样本提供了一种有前景的方法,否则这些样本可能会因低甲基化细胞占主导而受到阻碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2dbf/10215291/379c9a4e18b7/animals-13-01596-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验