Karbalaei Akbari Mohammad, Siraj Lopa Nasrin, Park Jihae, Zhuiykov Serge
Department of Solid-State Sciences, Faculty of Science, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium.
Center for Environmental and Energy Research, Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Republic of Korea.
Materials (Basel). 2023 May 11;16(10):3675. doi: 10.3390/ma16103675.
Plasmonic nanostructures ensure the reception and harvesting of visible lights for novel photonic applications. In this area, plasmonic crystalline nanodomains decorated on the surface of two-dimensional (2D) semiconductor materials represent a new class of hybrid nanostructures. These plasmonic nanodomains activate supplementary mechanisms at material heterointerfaces, enabling the transfer of photogenerated charge carriers from plasmonic antennae into adjacent 2D semiconductors and therefore activate a wide range of visible-light assisted applications. Here, the controlled growth of crystalline plasmonic nanodomains on 2D GaO nanosheets was achieved by sonochemical-assisted synthesis. In this technique, Ag and Se nanodomains grew on 2D surface oxide films of gallium-based alloy. The multiple contribution of plasmonic nanodomains enabled the visible-light-assisted hot-electron generation at 2D plasmonic hybrid interfaces, and therefore considerably altered the photonic properties of the 2D GaO nanosheets. Specifically, the multiple contribution of semiconductor-plasmonic hybrid 2D heterointerfaces enabled efficient CO conversion through combined photocatalysis and triboelectric-activated catalysis. The solar-powered acoustic-activated conversion approach of the present study enabled us to achieve the CO conversion efficiency of more than 94% in the reaction chambers containing 2D GaO-Ag nanosheets.
等离子体纳米结构确保了用于新型光子应用的可见光的接收和收集。在这一领域,二维(2D)半导体材料表面装饰的等离子体晶体纳米域代表了一类新型的混合纳米结构。这些等离子体纳米域在材料异质界面激活了补充机制,使光生载流子能够从等离子体天线转移到相邻的二维半导体中,从而激活了广泛的可见光辅助应用。在此,通过声化学辅助合成实现了二维GaO纳米片上晶体等离子体纳米域的可控生长。在该技术中,Ag和Se纳米域在镓基合金的二维表面氧化膜上生长。等离子体纳米域的多重作用使得二维等离子体混合界面能够产生可见光辅助的热电子,从而显著改变了二维GaO纳米片的光子特性。具体而言,半导体-等离子体混合二维异质界面的多重作用通过光催化和摩擦电激活催化相结合实现了高效的CO转化。本研究的太阳能驱动声激活转化方法使我们在含有二维GaO-Ag纳米片的反应室中实现了超过94%的CO转化效率。