Vázquez-Rodríguez Francisco, Elizondo Nora, Montes-González Myriam, Gómez-Rodríguez Cristian, González-Carranza Yadira, Guzmán Ana M, Rodríguez Edén A
Programa Doctoral en Ingeniería Física, Facultad de Ciencias Físico Matemáticas (FCFM), Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza 66450, Nuevo León, Mexico.
Facultad de Arquitectura (FARQ), Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza 66450, Nuevo León, Mexico.
Materials (Basel). 2023 May 18;16(10):3818. doi: 10.3390/ma16103818.
Concrete is the most used construction material, needing large quantities of Portland cement. Unfortunately, Ordinary Portland Cement production is one of the main generators of CO, which pollutes the atmosphere. Today, geopolymers are an emerging building material generated by the chemical activity of inorganic molecules without the Portland Cement addition. The most common alternative cementitious agents used in the cement industry are blast-furnace slag and fly ash. In the present work, the effect of 5 wt.% µ-limestone in mixtures of granulated blast-furnace slag and fly ash activated with sodium hydroxide (NaOH) at different concentrations was studied to evaluate the physical properties in the fresh and hardened states. The effect of µ-limestone was explored through XRD, SEM-EDS, atomic absorption, etc. The addition of µ-limestone increased the compressive strength reported values from 20 to 45 MPa at 28 days. It was found by atomic absorption that the CaCO of the μ-limestone dissolved in NaOH, precipitating Ca(OH) as the reaction product. SEM-EDS analysis showed a chemical interaction between C-A-S-H- and N-A-S-H-type gels with Ca(OH), forming (N, C)A-S-H- and C-(N)-A-S-H-type gels, improving mechanical performance and microstructural properties. The addition of μ-limestone appeared like a promising and cheap alternative for enhancing the properties of low-molarity alkaline cement since it helped exceed the 20 MPa strength recommended by current regulations for conventional cement.
混凝土是使用最广泛的建筑材料,需要大量的波特兰水泥。不幸的是,普通波特兰水泥生产是二氧化碳的主要产生源之一,会污染大气。如今,地质聚合物是一种新兴的建筑材料,由无机分子的化学活性产生,无需添加波特兰水泥。水泥行业中最常用的替代胶凝剂是高炉矿渣和粉煤灰。在本研究中,研究了5 wt.%的μ-石灰石在不同浓度氢氧化钠(NaOH)激活的粒化高炉矿渣和粉煤灰混合物中的作用,以评估其在新拌状态和硬化状态下的物理性能。通过X射线衍射(XRD)、扫描电子显微镜-能谱分析(SEM-EDS)、原子吸收等方法探究了μ-石灰石的作用。添加μ-石灰石使28天的抗压强度报告值从20 MPa提高到45 MPa。通过原子吸收发现,μ-石灰石中的碳酸钙溶解在NaOH中,沉淀出Ca(OH)作为反应产物。SEM-EDS分析表明,C-A-S-H型和N-A-S-H型凝胶与Ca(OH)之间存在化学相互作用,形成了(N, C)A-S-H型和C-(N)-A-S-H型凝胶,改善了力学性能和微观结构性能。添加μ-石灰石似乎是一种有前景且廉价的增强低摩尔浓度碱性水泥性能的替代方法,因为它有助于超过现行常规水泥法规推荐的20 MPa强度。