Suppr超能文献

构建铜死亡相关基因签名预测胃癌预后。

Construction of a Cuproptosis-Related Gene Signature for Predicting Prognosis in Gastric Cancer.

机构信息

The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China.

Department of Oncology Surgery, Gansu Provincial Hospital, Lanzhou, China.

出版信息

Biochem Genet. 2024 Feb;62(1):40-58. doi: 10.1007/s10528-023-10406-9. Epub 2023 May 27.

Abstract

This study aimed to develop and validate a cuproptosis-related gene signature for the prognosis of gastric cancer. The data in TCGA GC TPM format from UCSC were extracted for analysis, and GC samples were randomly divided into training and validation groups. Pearson correlation analysis was used to obtain cuproptosis-related genes co-expressed with 19 Cuproptosis genes. Univariate Cox and Lasso regression analyses were used to obtain cuproptosis-related prognostic genes. Multivariate Cox regression analysis was used to construct the final prognostic risk model. The risk score curve, Kaplan-Meier survival curves, and ROC curve were used to evaluate the predictive ability of Cox risk model. Finally, the functional annotation of the risk model was obtained through enrichment analysis. Then, a six-gene signature was identified in the training cohort and verified among all cohorts using Cox regression analyses and Kaplan-Meier plots, demonstrating its independent prognostic significance for gastric cancer. In addition, ROC analysis confirmed the significant predictive potential of this signature for the prognosis of gastric cancer. Functional enrichment analysis was mainly related to cell-matrix function. Therefore, a new cuproptosis-related six-gene signature (ACLY, FGD6, SERPINE1, SPATA13, RANGAP1, and ADGRE5) was constructed for the prognosis of gastric cancer, allowing for tailored prediction of outcome and the formulation of novel therapeutics for gastric cancer patients.

摘要

本研究旨在开发和验证与铜死亡相关的基因特征,用于预测胃癌的预后。从 UCSC 提取 TCGA GC TPM 格式的数据进行分析,并将 GC 样本随机分为训练组和验证组。采用 Pearson 相关分析获得与 19 个铜死亡基因共表达的铜死亡相关基因。采用单因素 Cox 和 Lasso 回归分析获得铜死亡相关预后基因。采用多因素 Cox 回归分析构建最终的预后风险模型。通过风险评分曲线、Kaplan-Meier 生存曲线和 ROC 曲线评估 Cox 风险模型的预测能力。最后,通过富集分析获得风险模型的功能注释。然后,在训练队列中确定了一个六基因特征,并通过 Cox 回归分析和 Kaplan-Meier 图在所有队列中进行验证,证明其对胃癌具有独立的预后意义。此外,ROC 分析证实了该特征对胃癌预后的显著预测潜力。功能富集分析主要与细胞基质功能有关。因此,构建了一个新的与铜死亡相关的六个基因特征(ACLY、FGD6、SERPINE1、SPATA13、RANGAP1 和 ADGRE5),用于预测胃癌的预后,能够为胃癌患者的预后进行个体化预测,并为胃癌患者制定新的治疗策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验