Suppr超能文献

巨核细胞分泌因子在骨骼稳态、衰老和疾病过程中调节骨髓龛细胞。

Megakaryocyte Secreted Factors Regulate Bone Marrow Niche Cells During Skeletal Homeostasis, Aging, and Disease.

机构信息

Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.

Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.

出版信息

Calcif Tissue Int. 2023 Jul;113(1):83-95. doi: 10.1007/s00223-023-01095-y. Epub 2023 May 27.

Abstract

The bone marrow microenvironment contains a diverse array of cell types under extensive regulatory control and provides for a novel and complex mechanism for bone regulation. Megakaryocytes (MKs) are one such cell type that potentially acts as a master regulator of the bone marrow microenvironment due to its effects on hematopoiesis, osteoblastogenesis, and osteoclastogenesis. While several of these processes are induced/inhibited through MK secreted factors, others are primarily regulated by direct cell-cell contact. Notably, the regulatory effects that MKs exert on these different cell populations has been found to change with aging and disease states. Overall, MKs are a critical component of the bone marrow that should be considered when examining regulation of the skeletal microenvironment. An increased understanding of the role of MKs in these physiological processes may provide insight into novel therapies that can be used to target specific pathways important in hematopoietic and skeletal disorders.

摘要

骨髓微环境包含多种细胞类型,这些细胞受到广泛的调控,并提供了一种新颖而复杂的骨骼调节机制。巨核细胞(MK)是这样一种细胞类型,由于其对造血、成骨细胞生成和破骨细胞生成的影响,MK 可能充当骨髓微环境的主调控因子。虽然这些过程中的几个过程是通过 MK 分泌的因子诱导/抑制的,但其他过程主要通过直接的细胞-细胞接触来调节。值得注意的是,MK 对这些不同细胞群的调节作用会随着衰老和疾病状态而改变。总体而言,MK 是骨髓的关键组成部分,在研究骨骼微环境的调节时应考虑到这一点。增加对 MK 在这些生理过程中的作用的理解,可能为针对造血和骨骼疾病中重要的特定途径的新型治疗方法提供启示。

相似文献

1
Megakaryocyte Secreted Factors Regulate Bone Marrow Niche Cells During Skeletal Homeostasis, Aging, and Disease.
Calcif Tissue Int. 2023 Jul;113(1):83-95. doi: 10.1007/s00223-023-01095-y. Epub 2023 May 27.
2
S100 Calcium-Binding Protein P Secreted from Megakaryocytes Promotes Osteoclast Maturation.
Int J Mol Sci. 2021 Jun 7;22(11):6129. doi: 10.3390/ijms22116129.
4
Identification of megakaryocytes as a target of advanced glycation end products in diabetic complications in bone marrow.
Acta Diabetol. 2018 May;55(5):419-427. doi: 10.1007/s00592-018-1109-z. Epub 2018 Feb 8.
5
OP9 bone marrow stroma cells differentiate into megakaryocytes and platelets.
PLoS One. 2013;8(3):e58123. doi: 10.1371/journal.pone.0058123. Epub 2013 Mar 1.
6
Megakaryocytes promote osteoclastogenesis in aging.
Aging (Albany NY). 2020 Jul 7;12(14):15121-15133. doi: 10.18632/aging.103595.
7
CLEC-2 in megakaryocytes is critical for maintenance of hematopoietic stem cells in the bone marrow.
J Exp Med. 2015 Nov 16;212(12):2133-46. doi: 10.1084/jem.20150057. Epub 2015 Nov 9.
8
Megakaryocytes as the Regulator of the Hematopoietic Vascular Niche.
Front Oncol. 2022 Jun 22;12:912060. doi: 10.3389/fonc.2022.912060. eCollection 2022.
10
Megakaryocytes promote bone formation through coupling osteogenesis with angiogenesis by secreting TGF-β1.
Theranostics. 2020 Jan 12;10(5):2229-2242. doi: 10.7150/thno.40559. eCollection 2020.

引用本文的文献

2
Temporal bone marrow of the rat and its connections to the inner ear.
Front Neurol. 2024 May 16;15:1386654. doi: 10.3389/fneur.2024.1386654. eCollection 2024.
3
Do Not Lose Your Nerve, Be Callus: Insights Into Neural Regulation of Fracture Healing.
Curr Osteoporos Rep. 2024 Feb;22(1):182-192. doi: 10.1007/s11914-023-00850-2. Epub 2024 Jan 31.
4
Role of the Neurologic System in Fracture Healing: An Extensive Review.
Curr Osteoporos Rep. 2024 Feb;22(1):205-216. doi: 10.1007/s11914-023-00844-0. Epub 2024 Jan 18.
5
The Skeleton as a Secretory Organ.
Calcif Tissue Int. 2023 Jul;113(1):1-3. doi: 10.1007/s00223-023-01106-y. Epub 2023 Jul 1.

本文引用的文献

1
Nosology of genetic skeletal disorders: 2023 revision.
Am J Med Genet A. 2023 May;191(5):1164-1209. doi: 10.1002/ajmg.a.63132. Epub 2023 Feb 13.
2
Insights into Regulatory Factors in Megakaryocyte Development and Function: Basic Mechanisms and Potential Targets.
Front Biosci (Landmark Ed). 2022 Nov 25;27(11):313. doi: 10.31083/j.fbl2711313.
3
Hereditary Metabolic Bone Diseases: A Review of Pathogenesis, Diagnosis and Management.
Genes (Basel). 2022 Oct 17;13(10):1880. doi: 10.3390/genes13101880.
4
Phenotype-autosomal recessive osteopetrosis.
Bone. 2022 Dec;165:116577. doi: 10.1016/j.bone.2022.116577. Epub 2022 Oct 3.
5
Platelets and osteoblasts: secretome connections.
Am J Physiol Cell Physiol. 2022 Aug 1;323(2):C347-C353. doi: 10.1152/ajpcell.00187.2022. Epub 2022 Jun 8.
7
G6b-B regulates an essential step in megakaryocyte maturation.
Blood Adv. 2022 May 24;6(10):3155-3161. doi: 10.1182/bloodadvances.2021006151.
8
Impact of FGF1 on human periodontal ligament fibroblast growth, osteogenic differentiation and inflammatory reaction in vitro.
J Orofac Orthop. 2022 Oct;83(Suppl 1):42-55. doi: 10.1007/s00056-021-00363-6. Epub 2021 Dec 7.
10
Rheumatoid arthritis, systemic lupus erythematosus and primary Sjögren's syndrome shared megakaryocyte expansion in peripheral blood.
Ann Rheum Dis. 2022 Mar;81(3):379-385. doi: 10.1136/annrheumdis-2021-220066. Epub 2021 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验