Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100, Bolzano, Italy.
Health Data Science Center, Human Technopole, Viale Rita Levi Montalcini, 1, 20157, Milan, Italy.
BMC Med Res Methodol. 2023 May 27;23(1):131. doi: 10.1186/s12874-023-01930-8.
BACKGROUND: The recent progress in molecular biology generates an increasing interest in investigating molecular biomarkers as markers of response to treatments. The present work is motivated by a study, where the objective was to explore the potential of the molecular biomarkers of renin-angiotensin-aldosterone system (RAAS) to identify the undertaken antihypertensive treatments in the general population. Population-based studies offer an opportunity to assess the effectiveness of treatments in real-world scenarios. However, lack of quality documentation, especially when electronic health record linkage is unavailable, leads to inaccurate reporting and classification bias. METHOD: We present a machine learning clustering technique to determine the potential of measured RAAS biomarkers for the identification of undertaken treatments in the general population. The biomarkers were simultaneously determined through a novel mass-spectrometry analysis in 800 participants of the Cooperative Health Research In South Tyrol (CHRIS) study with documented antihypertensive treatments. We assessed the agreement, sensitivity and specificity of the resulting clusters against known treatment types. Through the lasso penalized regression, we identified clinical characteristics associated with the biomarkers, accounting for the effects of cluster and treatment classifications. RESULTS: We identified three well-separated clusters: cluster 1 (n = 444) preferentially including individuals not receiving RAAS-targeting drugs; cluster 2 (n = 235) identifying angiotensin type 1 receptor blockers (ARB) users (weighted kappa κ = 74%; sensitivity = 73%; specificity = 83%); and cluster 3 (n = 121) well discriminating angiotensin-converting enzyme inhibitors (ACEi) users (κ = 81%; sensitivity = 55%; specificity = 90%). Individuals in clusters 2 and 3 had higher frequency of diabetes as well as higher fasting glucose and BMI levels. Age, sex and kidney function were strong predictors of the RAAS biomarkers independently of the cluster structure. CONCLUSIONS: Unsupervised clustering of angiotensin-based biomarkers is a viable technique to identify individuals on specific antihypertensive treatments, pointing to a potential application of the biomarkers as useful clinical diagnostic tools even outside of a controlled clinical setting.
背景:分子生物学的最新进展激发了人们对将分子生物标志物作为治疗反应标志物进行研究的浓厚兴趣。本研究的目的是探索肾素-血管紧张素-醛固酮系统(RAAS)的分子生物标志物是否有潜力识别一般人群中接受的降压治疗。基于人群的研究为评估实际治疗效果提供了机会。然而,由于缺乏高质量的记录,特别是在无法进行电子健康记录链接的情况下,会导致报告不准确和分类偏倚。
方法:我们提出了一种机器学习聚类技术,以确定通过新型质谱分析在有记录的降压治疗的 800 名合作健康研究在南蒂罗尔(CHRIS)研究参与者中同时测量的 RAAS 生物标志物对一般人群中接受的治疗的识别潜力。我们评估了所得聚类对已知治疗类型的一致性、敏感性和特异性。通过套索惩罚回归,我们确定了与生物标志物相关的临床特征,同时考虑了聚类和治疗分类的影响。
结果:我们发现了三个分离良好的聚类:第 1 组(n=444)主要包括未接受 RAAS 靶向药物治疗的个体;第 2 组(n=235)确定了血管紧张素 1 型受体阻滞剂(ARB)使用者(加权 kappa κ=74%;敏感性=73%;特异性=83%);第 3 组(n=121)很好地区分了血管紧张素转换酶抑制剂(ACEi)使用者(κ=81%;敏感性=55%;特异性=90%)。第 2 组和第 3 组的个体糖尿病发病率更高,空腹血糖和 BMI 水平也更高。年龄、性别和肾功能是独立于聚类结构的 RAAS 生物标志物的强预测因素。
结论:基于血管紧张素的生物标志物的无监督聚类是识别特定降压治疗个体的可行技术,这表明生物标志物作为有用的临床诊断工具,即使在不受控制的临床环境之外也具有潜在的应用。
BMC Med Res Methodol. 2023-5-27
Cochrane Database Syst Rev. 2011-10-5
Cochrane Database Syst Rev. 2014-6-23
Cochrane Database Syst Rev. 2022-2-1
Kidney Int Rep. 2025-2-25
Int J Epidemiol. 2025-4-12
Nanomaterials (Basel). 2024-7-24
Biomedicines. 2023-11-1
Am J Kidney Dis. 2018-9-7
Eur Heart J. 2018-9-1