Zibaei-Rad Aref, Rahmati-Joneidabad Mostafa, Alizadeh Behbahani Behrooz, Taki Morteza
Department of Horticultural Science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, P.O. Box: 6341773637, Mollasani, Iran.
Department of Horticultural Science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, P.O. Box: 6341773637, Mollasani, Iran.
Microb Pathog. 2023 Aug;181:106177. doi: 10.1016/j.micpath.2023.106177. Epub 2023 May 26.
In this study, Lacticaseibacillus casei XN18 had a remarkable resistant to simulated gastrointestinal conditions, hydrophobicity (38.60%), auto-aggregation (29.80%), co-aggregation (21.10%), adhesion (9.50%), anti-adhesion (24.40-36.90%), antioxidant activity (46.47%), cholesterol assimilation (41.10%), and antimicrobial effect on some pathogenic microorganisms. The modified double layer method, and Enterobacter aerogenes (inhibition zone (IZ) = 9.10 mm) and Listeria monocytogenes (IZ = 14.60 mm) were the most sensitive and resistant pathogens to the probiotic strain. The Lb. casei was sensitive to ciprofloxacin (IZ = 23 mm) and nitrofurantoin (IZ = 25.10 mm), semi-sensitive to imipenem (IZ = 18.80 mm), erythromycin (IZ = 16.90 mm), and chloramphenicol (IZ = 17.90 mm), and resistant to ampicillin (IZ = 9.60 mm) and nalidixic acid (IZ = 9.90 mm). The Lb. casei showed no haemolytic and DNase properties, and it could therefore be used for health-promoting purposes. In the next section, multilayer perceptron (MLP) neural network (NN) and gaussian process regression (GPR) models with k-fold cross validation method were used for predicting the rate of probiotic viability based on three levels of pH and time. The results showed that GPR has the lowest error. The mean absolute percentage error (MAPE), root mean absolute error (RMSE) and coefficient of determination (R) for GPR and MLP models were 1.49 ± 0.40, 0.21 ± 0.03, 0.98 ± 0.05 and 6.66 ± 0.98, 0.83 ± 0.23 0.82 ± 0.09, respectively. So, the GPR model can be reliably used as a useful method to predict the probiotic viability in similar cases.
在本研究中,干酪乳杆菌XN18对模拟胃肠道环境具有显著抗性,其疏水性为38.60%,自聚集率为29.80%,共聚集率为21.10%,黏附率为9.50%,抗黏附率为24.40 - 36.90%,抗氧化活性为46.47%,胆固醇同化率为41.10%,且对一些致病微生物具有抗菌作用。改良双层法显示,产气肠杆菌(抑菌圈(IZ)= 9.10毫米)和单核细胞增生李斯特菌(IZ = 14.60毫米)分别是对该益生菌菌株最敏感和最具抗性的病原体。干酪乳杆菌对环丙沙星(IZ = 23毫米)和呋喃妥因(IZ = 25.10毫米)敏感,对亚胺培南(IZ = 18.80毫米)、红霉素(IZ = 16.90毫米)和氯霉素(IZ = 17.90毫米)半敏感,对氨苄西林(IZ = 9.60毫米)和萘啶酸(IZ = 9.90毫米)耐药。干酪乳杆菌无溶血和DNase特性,因此可用于促进健康。在下一节中,采用具有k折交叉验证方法的多层感知器(MLP)神经网络(NN)和高斯过程回归(GPR)模型,基于三个pH水平和时间来预测益生菌的存活率。结果表明,GPR的误差最低。GPR和MLP模型的平均绝对百分比误差(MAPE)、均方根绝对误差(RMSE)和决定系数(R)分别为1.49±0.40、0.21±0.03、0.98±0.05和6.66±0.98、0.83±0.23、0.82±0.09。因此,GPR模型可作为一种可靠的方法,用于预测类似情况下的益生菌存活率。