多尺度蒙特卡罗模拟金纳米颗粒增强放射治疗 II. 宏观肿瘤模型内的细胞剂量增强。
Multiscale Monte Carlo simulations of gold nanoparticle dose-enhanced radiotherapy II. Cellular dose enhancement within macroscopic tumor models.
机构信息
Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Ontario, Canada.
出版信息
Med Phys. 2023 Sep;50(9):5842-5852. doi: 10.1002/mp.16460. Epub 2023 May 29.
BACKGROUND
Gold NanoParticle (GNP) dose-enhanced radiation therapy (GNPT) requires consideration of physics across macro- to microscopic length scales, however, this presents computational challenges that have limited previous investigations.
PURPOSE
To develop and apply multiscale Monte Carlo (MC) simulations to assess variations in nucleus and cytoplasm dose enhancement factors (n,cDEFs) over tumor-scale volumes.
METHODS
The intrinsic variation of n,cDEFs (due to fluctuations in local gold concentration and cell/nucleus size variation) are estimated via MC modeling of varied cellular GNP uptake and cell/nucleus sizes. Then, the Heterogeneous MultiScale (HetMS) model is implemented in MC simulations by combining detailed models of populations of cells containing GNPs within simplified macroscopic tissue models to evaluate n,cDEFs. Simulations of tumors with spatially uniform gold concentrations (5, 10, or 20 mg /g ) and spatially varying gold concentrations eluted from a point are performed to determine n,cDEFs as a function of distance from the source for 10 to 370 keV photons. All simulations are performed for three different intracellular GNP configurations: GNPs distributed on the surface of the nucleus (perinuclear) and GNPs packed into one or four endosome(s).
RESULTS
Intrinsic variations in n,cDEFs can be substantial, for example, if GNP uptake and cell/nucleus radii are varied by 20%, variations of up to 52% in nDEF and 25% in cDEF are observed compared to the nominal values for uniform cell/nucleus size and GNP concentration. In HetMS models of macroscopic tumors, subunity n,cDEFs (i.e., dose decreases) can occur for low energies and high gold concentrations due to attenuation of primary photons through the gold-filled volumes, for example, n,cDEF<1 is observed 3 mm from a 20 keV source for the four endosome configuration. In HetMS simulations of tumors with spatially uniform gold concentrations, n,cDEFs decrease with depth into the tumor as photons are attenuated, with relative differences between GNP models remaining approximately constant with depth in the tumor. Similar initial n,cDEF decreases with radius are seen in the tumors with spatially varying gold concentrations, but the n,cDEFs for all of the GNP configurations converge to a single value for each energy as gold concentration reaches zero.
CONCLUSIONS
The HetMS framework has been implemented for multiscale MC simulations of GNPT to compute n,cDEFs over tumor-scale volumes, with results demonstrating that cellular doses are highly sensitive to cell/nucleus size, GNP intracellular distribution, gold concentration, and cell position in tumor. This work demonstrates the importance of proper choice of computational model when simulating GNPT scenarios and the need to account for intrinsic variations in n,cDEFs due to variations in cell/nucleus size and gold concentration.
背景
金纳米颗粒(GNP)剂量增强放射治疗(GNPT)需要考虑宏观到微观长度尺度的物理学,然而,这带来了计算方面的挑战,限制了之前的研究。
目的
开发并应用多尺度蒙特卡罗(MC)模拟来评估肿瘤体积内核和细胞质剂量增强因子(n,cDEF)的变化。
方法
通过对不同细胞摄取 GNP 和细胞/核大小的 MC 建模,估计 n,cDEF 的固有变化(由于局部金浓度和细胞/核大小变化的波动引起)。然后,通过将包含 GNPs 的细胞群体的详细模型与简化的宏观组织模型结合,在 MC 模拟中实现非均匀多尺度(HetMS)模型,以评估 n,cDEF。对具有空间均匀金浓度(5、10 或 20mg/g)和从点洗脱的空间变化金浓度的肿瘤进行模拟,以确定距源 10 至 370keV 光子的 n,cDEF 随距离的变化。对于三种不同的细胞内 GNP 配置,所有模拟均进行:核表面分布的 GNP(核周)和封装到一个或四个内体中的 GNP。
结果
n,cDEF 的固有变化可能很大,例如,如果 GNP 摄取和细胞/核半径变化 20%,则与细胞/核大小和 GNP 浓度均匀的标称值相比,nDEF 的变化高达 52%,cDEF 的变化高达 25%。在宏观肿瘤的 HetMS 模型中,由于通过充满金的体积衰减初级光子,低能量和高金浓度下可能会出现亚单位 n,cDEF(即剂量降低),例如,对于四个内体配置,在 20keV 源 3mm 处观察到 n,cDEF<1。在具有空间均匀金浓度的肿瘤的 HetMS 模拟中,随着光子的衰减,n,cDEF 随肿瘤深度的增加而降低,不同 GNP 模型之间的相对差异在肿瘤内的深度基本保持不变。在空间变化金浓度的肿瘤中,也可以看到初始 n,cDEF 随半径的相似降低,但对于所有 GNP 配置,随着金浓度达到零,n,cDEF 都收敛到每个能量的单个值。
结论
已经为 GNPT 的多尺度 MC 模拟实施了 HetMS 框架,以计算肿瘤体积内的 n,cDEF,结果表明细胞剂量对细胞/核大小、GNP 细胞内分布、金浓度和肿瘤内细胞位置非常敏感。这项工作表明,在模拟 GNPT 场景时,正确选择计算模型非常重要,并且需要考虑由于细胞/核大小和金浓度变化引起的 n,cDEF 的固有变化。