Suppr超能文献

解析上海新冠疫情期间工业区异常臭氧引发的O-NO-VOCs关系

Unraveling the O-NO-VOCs relationships induced by anomalous ozone in industrial regions during COVID-19 in Shanghai.

作者信息

Lu Bingqing, Zhang Zekun, Jiang Jiakui, Meng Xue, Liu Chao, Herrmann Hartmut, Chen Jianmin, Xue Likun, Li Xiang

机构信息

Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, China.

Leibniz-Institut für Troposphärenforschung (IfT), Permoserstr. 15, 04318, Leipzig, Germany.

出版信息

Atmos Environ (1994). 2023 Sep 1;308:119864. doi: 10.1016/j.atmosenv.2023.119864. Epub 2023 May 23.

Abstract

The COVID-19 pandemic promoted strict restrictions to human activities in China, which led to an unexpected increase in ozone (O) regarding to nitrogen oxides (NOx) and volatile organic compounds (VOCs) co-abatement in urban China. However, providing a quantitative assessment of the photochemistry that leads to O increase is still challenging. Here, we evaluated changes in O arising from photochemical production with precursors (NO and VOC) in industrial regions in Shanghai during the COVID-19 lockdowns by using machine learning models and box models. The changes of air pollutants (O, NO, VOCs) during the COVID-19 lockdowns were analyzed by deweathering and detrending machine learning models with regard to meteorological and emission effects. After accounting for effects of meteorological variability, we find increase in O concentration (49.5%). Except for meteorological effects, model results of detrending the business-as-usual changes indicate much smaller reduction (-0.6%), highlighting the O increase attributable to complex photochemistry mechanism and the upward trends of O due to clear air policy in Shanghai. We then used box models to assess the photochemistry mechanism and identify key factors that control O production during lockdowns. It was found that empirical evidence for a link between efficient radical propagation and the optimized O production efficiency of NO under the VOC-limited conditions. Simulations with box models also indicate that priority should be given to controlling industrial emissions and vehicle exhaust while the VOCs and NO should be managed at a proper ratio in order to control O in winter. While lockdown is not a condition that could ever be continued indefinitely, findings of this study offer theoretical support for formulating refined O management in industrial regions in Shanghai, especially in winter.

摘要

新冠疫情促使中国对人类活动实施了严格限制,这导致中国城市中与氮氧化物(NOx)和挥发性有机化合物(VOCs)协同减排相关的臭氧(O₃)意外增加。然而,对导致臭氧增加的光化学过程进行定量评估仍然具有挑战性。在此,我们利用机器学习模型和箱式模型评估了新冠疫情封锁期间上海工业区光化学产生的臭氧随前体物(NO和VOCs)的变化。通过对机器学习模型进行去气象化和去趋势化处理,分析了新冠疫情封锁期间空气污染物(O₃、NO、VOCs)在气象和排放影响方面的变化。在考虑气象变率的影响后,我们发现臭氧浓度增加了49.5%。除气象影响外,对照常变化进行去趋势化处理后的模型结果显示减少幅度要小得多(-0.6%),这突出了复杂光化学机制导致的臭氧增加以及上海清洁空气政策导致的臭氧上升趋势。然后,我们使用箱式模型评估光化学机制,并确定封锁期间控制臭氧产生的关键因素。研究发现了在VOCs受限条件下有效自由基传播与NO优化臭氧产生效率之间联系的经验证据。箱式模型模拟还表明,冬季控制臭氧时应优先控制工业排放和机动车尾气,同时应适当控制VOCs和NO的比例。虽然封锁不可能无限期持续,但本研究结果为上海工业区,特别是冬季制定精细化臭氧管理提供了理论支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ef/10204281/a9aa55ae6589/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验