Girod Robin, Lazaridis Timon, Gasteiger Hubert A, Tileli Vasiliki
Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Chair of Technical Electrochemistry, Department of Chemistry and Catalysis Research Center, Technische Universität München, Garching, Germany.
Nat Catal. 2023;6(5):383-391. doi: 10.1038/s41929-023-00947-y. Epub 2023 Apr 17.
Catalyst layers in proton exchange membrane fuel cells consist of platinum-group-metal nanocatalysts supported on carbon aggregates, forming a porous structure through which an ionomer network percolates. The local structural character of these heterogeneous assemblies is directly linked to the mass-transport resistances and subsequent cell performance losses; its three-dimensional visualization is therefore of interest. Herein we implement deep-learning-aided cryogenic transmission electron tomography for image restoration, and we quantitatively investigate the full morphology of various catalyst layers at the local-reaction-site scale. The analysis enables computation of metrics such as the ionomer morphology, coverage and homogeneity, location of platinum on the carbon supports, and platinum accessibility to the ionomer network, with the results directly compared and validated with experimental measurements. We expect that our findings and methodology for evaluating catalyst layer architectures will contribute towards linking the morphology to transport properties and overall fuel cell performance.
质子交换膜燃料电池中的催化剂层由负载在碳聚集体上的铂族金属纳米催化剂组成,形成一种多孔结构,离聚物网络贯穿其中。这些非均相组件的局部结构特征与传质阻力以及随后的电池性能损失直接相关;因此,对其进行三维可视化很有意义。在此,我们采用深度学习辅助低温透射电子断层扫描进行图像恢复,并在局部反应位点尺度上定量研究各种催化剂层的完整形态。该分析能够计算离聚物形态、覆盖率和均匀性、铂在碳载体上的位置以及铂与离聚物网络的可达性等指标,其结果可直接与实验测量值进行比较和验证。我们期望我们评估催化剂层结构的研究结果和方法将有助于将形态与传输特性以及整体燃料电池性能联系起来。